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Estimating Plant Traits of Alpine Grasslands on the
Qinghai-Tibetan Plateau Using Remote Sensing

Chengxiu Li , Hendrik Wulf, Bernhard Schmid, Jin-Sheng He, and Michael E. Schaepman , Senior Member, IEEE

Abstract—Mapping plants traits on the Qinghai-Tibetan Plateau
grassland is important for understanding ecosystem functions and
how plants respond to global change. Detailed trait maps for the
complete Qinghai-Tibetan Plateau are missing. Here, we addressed
this issue by combining Sentinel-2 and Landsat-8 multispectral
satellite data with field measurements to map and compare plant
traits of meadow and steppe communities across the complete
Qinghai-Tibetan Plateau. We measured in-situ plant-level traits
of CHLorophyll content (CHL), specific plant area (SPA = plant
area / plant dry mass), and plant dry matter content (PDMC =
plant dry mass / fresh mass). We hypothesized that plant-level
traits of SPA and PDMC are close to community-weighted means
(CWMs) of specific leaf area (SLA) and leaf dry matter content
(LDMC) because leaves represent the largest fraction of above-
ground biomass in the Qinghai-Tibetan Plateau grasslands. Despite
vastly different measurement methods, we found that the remotely
sensed traits (SPA and PDMC) correlated with literature-derived
leaf traits of CWMs of SLA and LDMC. Both remotely sensed and
field-measured results showed that alpine meadow plants reveal
a wider range and higher averages of CHL and SPA but lower
PDMC compared with alpine steppe plants. These trait differences
between vegetation types indicate faster growth of alpine meadow
and higher resilience to harsh conditions of alpine steppe, repre-
senting differences in adaptation strategies to environmental con-
ditions. Our study demonstrates that remote sensing can be used
to estimate plant traits in alpine grasslands with potential appli-
cations to retrieve functional diversity and correlated ecosystem
functions in future studies.

Index Terms—Chlorophyll content (CHL), Landsat-8, Leaf Dry
Matter Content (LDMC), Plant Dry Matter Content (PDMC),
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I. INTRODUCTION

P LANT traits are physiological and morphological fea-
tures of an organism [1]. Plant traits such as leaf nitrogen

concentration, specific leaf area (SLA), and leaf dry matter con-
tent (LDMC) are related to plant physiological processes such
as light capture and photosynthetic rate and can hence provide
indications of functional strategies of plants in different environ-
mental conditions [2], [3]. These correlations make these traits
key to predict ecosystem functions, such as primary productivity
[4]. Within the recently emerging discussion on essential bio-
diversity variables derived by remote-sensing techniques [5],
these traits have been listed as key plant functional traits [6].
Their relevance for plant and ecosystem functioning is reflected
by their incorporation into dynamic global vegetation models to
simulate ecosystem functions such as vegetation carbon dynam-
ics and hydrological processes [7], [8]. Therefore the retrieval
of these plant traits is important, in particular for grasslands,
which cover more than 40% of the terrestrial land surface and
are responsible for important ecosystem services such as carbon
sequestration and forage production [4].

In alpine grasslands, leaf-level trait measurements are close
to plant-level trait measurements, because herbaceous plants do
not have prominent aboveground stems and in addition stems are
green and thus are physiologically similar to leaves. This is espe-
cially the case for the grassland on the Qinghai-Tibetan Plateau,
where aboveground vegetation is dominated by graminoids and
rosette- and cushion-forming plants [9], [10]. For these types
of vegetation, aboveground part of plants can therefore be con-
sidered as equivalent to “big-leaf structures” when measuring
traits [11]. Regarding photosynthesis and primary productiv-
ity it is hence appropriate to work with aboveground plant-level
traits rather than leaf-level traits in these vegetation types. Plant-
level traits aggregated to the community level allow for an easier
integration with spaceborne remote-sensing datasets, which typ-
ically collect spectral information of grasslands at the canopy
level. Therefore, we approximate Specific Plant Area (SPA =
plant area/plant dry mass) and Plant Dry Matter Content (PDMC
= plant dry mass/plant fresh mass) to Community-Weighted
Means (CWMs) of SLA and LDMC. The proxy traits of SPA
and PDMC can be estimated for extensive area from remotely
sensed spectra.
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Fig. 1. Distribution of grassland vegetation types [40] on the Chinese part of the Qinghai-Tibetan Plateau and sampling site locations used in this study (2015 =
black dots, 2016 = red dots). Inset indicates elevation data of the extended area based on the NASA Shuttle Radar Topographic Mission (SRTM Version 4) [94].

Remotely sensed vegetation spectra provide information on
plant physiological (e.g., pigment, SLA, and LDMC) and mor-
phological traits (e.g., leaf area) [12], [13]. Physical radiative-
transfer models and empirical statistical models have been
developed to estimate plant physiological and morphologi-
cal traits [12]–[17] using remotely sensed data. Employing
these models, plant traits such as CHLorophyll content (CHL)
[18]–[20], SLA [14], [21]–[24], and LDMC [16], [25], [26]
were successfully derived. Although LDMC and SLA are cru-
cial plant traits for understanding plant functioning, studies on
estimating CHL, SLA, and LDMC for grassland ecosystems us-
ing spectral data are relatively rare [12], [26]–[30]. In an earlier
study, a radiative-transfer model was inverted to estimate CHL
and leaf mass per area (LMA = 1/SLA) for a grassland ecosys-
tem, but the retrieved plant traits were not validated with the
field-measured traits [12]. A further local study applied partial
least squares regressions to estimate plant physiological traits
at leaf and canopy level using field spectroradiometer data [28].
To our knowledge, no study so far has estimated plant traits of
LDMC and SLA for grassland ecosystems using remote-sensing
data. Furthermore, we are not aware of studies that attempted
to estimate plant traits using remote sensing across the whole
Qinghai-Tibetan Plateau. Existing studies from the Qinghai-
Tibetan Plateau working with plant traits typically remained at
a plot scale and explored the relationships between local plant
traits and environmental variables such as soil and climatic vari-
ables [31], [32]; grazing level [33]–[35]; and elevation [36].

Estimating plant traits using remote sensing over the com-
plete Qinghai-Tibetan Plateau can help us to characterize the
current ecosystem state in terms of plant functioning. Such an
assessment cannot be realized on the ground with a realistic
financial budget due to the vast extent and limited accessibility
of the Qinghai-Tibetan Plateau. Furthermore, remote sensing
enables repeated assessments over time, which can help us to
identify changes of plant traits. Tracing changes of plant traits

on the Qinghai-Tibetan Plateau is particularly important as the
area is prone to be affected by the climate change due to its very
high altitude and corresponding harsh conditions [37]. This is
also mirrored in grassland degradation processes that have been
observed in different intensities over the Plateau and have been
related to anthropogenic activities (e.g., overgrazing) but also
natural process triggered by a changing climate [38]. Besides
such monitoring activities, spatially continuous data on plant
traits can also help us to better understand the current distri-
bution of plant functional types and plant strategy groups over
the Plateau. The latter could be crucial to understand poten-
tial threats for certain plant communities under climate change
scenarios.

In this study, we use field-measured values of canopy CHL,
specific plant area (SPA), and plant dry matter content (PDMC)
aggregated to the canopy level to derive remotely sensed proxies
of these traits for the entire Qinghai-Tibetan Plateau. Further-
more, we show how remotely sensed traits of SPA and PDMC
correspond to literature-derived Community-Weighted Means
(CWMs) of SLA and LDMC in alpine grasslands. Finally, based
on the plant traits estimated via remote sensing, we investigate
plant trait differences between four vegetation types to identify
differences in plant adaptation strategies.

II. DATA

A. Study Area and Vegetation Types

The Qinghai-Tibetan Plateau covers an area of approximately
2.5 × 106 km2 with complex terrain and an average elevation of
more than 4000 m a.s.l (see Fig. 1). The area shows a decreasing
thermal and moisture gradient from southeast to northwest [39],
where the mean annual temperature ranges from 15.5 to –5.0 °C
and the precipitation ranges from more than 1000 mm/yr to less
than 100 mm/yr [9], [39].
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TABLE I
SENTINEL-2 VEGETATION INDICES FOR CANOPY CHL ESTIMATION

The most dominant vegetation types are alpine steppe and
alpine meadow, which occupy 22.4% and 23% of the total
Plateau area, respectively [40]. Both vegetation types are pre-
dominantly located at elevations above 4000 m [9], [10], [41].
Alpine meadow occurs in the south-eastern humid highlands
[9], [41]. Alpine steppe prevails in the more (semi) arid central
and western highlands with low precipitation (<350 mm/yr)
[10]. Transitional zones with mixed alpine meadow and alpine
steppe occur in the central part of the Qinghai-Tibetan Plateau
[42]. Montane steppe and montane meadow are less dominant
grassland vegetation types, occupying only 4% and 1% of the
whole Plateau area [40]. These vegetation types occur predom-
inantly at altitudes <4000 m. Montane meadow mainly occurs
in the northeast Qaidam Basin. Montane steppe is distributed
on the northern margin of the Plateau and around the Qaidam
Basin [43].

B. Satellite Data

We used the Google Earth Engine [44] to process all available
satellite data of Landsat-8 surface reflectance [45], Sentinel-2
Top Of the Atmosphere (TOA) reflectance [46], Moderate Res-
olution Imaging Spectroradiometer (MODIS) Land Cover Type
product (MCD12Q1) [47], and MODIS Leaf Area Index (LAI)
product (MCD15A3H) [48]. We refer to MODIS LAI as Plant
Area Index (PAI) in our context. We applied the Landsat-8
surface reflectance Quality Assurance band (CFmask) [49],
[50] and the MCD15A3H quality control band (FparLai_QC)
to mask cloud, snow, and cloud shadow [51], [52]. We used
an adjusted Landsat cloud-score algorithm to mask clouds in
Sentinel-2 TOA reflectance data [53].

Given the availability of the red-edge bands in Sentinel-2,
we used Sentinel-2 data to estimate canopy CHL. In the study
area, Sentinel-2 data are available in the Google Earth Engine
as Level 1C TOA reflectance data from 2016 onwards. In all,
3560 Sentinel-2 TOA reflectance scenes spanning from July to
August 2016 were selected to calculate red-edge band vegeta-
tion indices (see Table I) for estimating canopy CHL. Landsat-8
surface reflectance data were available for both years, 2015
and 2016, which enabled us to link Landsat-8 data to all our
field measurements. Therefore, we used Landsat-8 surface re-
flectance data to calculate vegetation indices (see Table II) for
predicting dry aboveground biomass and PDMC. In total, 1542
Landsat-8 surface reflectance scenes were selected, which cov-
ered the whole study area from June to September in 2015 and

TABLE II
LANDSAT-8 VEGETATION INDICES FOR PDMC AND ABOVEGROUND

BIOMASS ESTIMATION

2016. We used the MCD15A3H LAI product with 4-day time-
steps and 500 m resolution from June to September in 2015
and 2016 to calculate the SPA, and MODIS Land Cover Type
product (MCD12Q1) from 2013 to mask out all land cover types
other than grasslands.

C. Data on Vegetation Types

The vegetation-type data were acquired from the Chinese
vegetation atlas (scale 1:1 000 000). This atlas is based on the
results of nationwide vegetation surveys and complementary
data from aerial remote-sensing devices and satellite images, as
well as geological, pedological, and climatological data [40].
The atlas provides a complete map of vegetation types and
is frequently used in studies on the Qinghai-Tibetan Plateau
[39], [54]. This dataset was used to build the link between plant
traits and vegetation types to further evaluate how plant traits dif-
fered among vegetation types. We provided a general overview
of the applied data and methods as flowchart (see Fig. 2).

III. METHODS

A. Field-Measured Plant Traits

Field data were collected on 59 sites over an area extending
1225 km in north-south and 695 km in east-west direction (see
Fig. 1). The sampling sites cover three vegetation types (i.e.,
alpine meadow, alpine steppe, and montane steppe) along an
east-west gradient (see Fig. 1). Montane meadow was not con-
sidered in the study because of its limited distribution area. The
data acquisition date coincided with the peak of the growing sea-
son (late July to mid-August) in 2015 and 2016. The montane
steppe sampling sites were located at lower altitudes (average
3200 m) compared to the alpine steppe sampling sites (average
4800 m). Alpine meadow sampling sites were distributed along
an elevation gradient ranging from 2800 to 5200 m. All sam-
pling sites were selected to have homogeneous vegetation cover.
At each site, four quadrats of one square meter were sampled
within an area of 250 × 250 m. Each of the four quadrats was
representative of the wider surrounding (30× 30 m) to represent
approximately the extent of a Landsat satellite image pixel.

In each quadrat, we conducted field measurements of
1) species cover, 2) SPAD leaf absorbance (SPAD-502Plus
Chlorophyll Meter, KONICA MINOLTA, INC., Osaka, Japan)
of abundant species, 3) plant area index (PAI), and 4) plot above-
ground plant fresh biomass and dry biomass. Species cover was
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Fig. 2. Flowchart displaying data and methods to derive plant traits.

averaged from 2 to 3 investigator estimations. For each species,
12–15 SPAD recordings were taken from different leaves and
averaged as species SPAD value [55], [56]. The CWM of SPAD
values was obtained by averaging the coverage-weighted
species-level SPAD values for each plot. CWMs of SPAD
values were converted to CHL values using the following
equation [56]:

Leaf CHL
(
mg/m2) = SPAD × 16.844 − 192.84. (1)

This model was calibrated from grass 14 CHL measurements
in the laboratory and corresponding SPAD values collected in
the field [56]. Finally, CHL values were upscaled to canopy
CHL by multiplication with the PAI values [55], [57]–[60]

Canopy CHL = leaf CHL × PAI. (2)

We refer PAI to LAI because all aboveground green parts of
a plant were measured instead of only leaves. The PAI measure-
ments were based on digital hemispherical photographs (DHPs)
and calculated with the CAN-EYE software [61], [62]. In each
quadrat, 8–10 downward pointing photos were taken with au-
tomatic exposure settings. Aboveground peaking plant fresh
biomass was measured by clipping, weighing to an accuracy of
±0.01 g, and then drying for 48 h at 65 °C to obtain a con-
stant dry aboveground biomass. In total, PAI was measured in
228 plots, and plant fresh and dry aboveground biomass was
measured in 172 plots.

To estimate traits in a mixed-species community, leaf traits
are typically measured for all species and aggregated to the
community mean weighted by species abundances in terms
of plant cover or aboveground plant biomass proportions
(CWMs) [63]. Ideally, CWMs of traits would be averaged
from traits of all plants within a community without requiring

taxonomic information of plant species [64]. This way of
trait measurements within a community is more efficient and
accurate because it is independent of the taxonomic information
and measures all plants within a community. Here, we measured
traits within a community directly from vegetation harvests, to
average plant-level traits of all plants of a community without
requiring taxonomic information. Specifically, we derived the
ratio of aboveground plant area and plant dry mass within
a community and used it as a proxy of the CWMs of SLA.
Similarly, we used the ratio of aboveground plant fresh mass
and dry mass within a community as a proxy of the CWMs
of LDMC. In other words, we refer to the ratio between PAI
and aboveground plant dry biomass within a field plot as SPA
and to the ratio between aboveground plant fresh biomass and
dry biomass as PDMC throughout this study. We hypothesize
that in alpine grasslands, SPA and PDMC are close to CWMs
of SLA and LDMC because leaves represent a large part of
aboveground biomass and aboveground nonleaf structures in
this vegetation (e.g., stems or graminoid inflorescences) are
also green and photosynthesizing. The SPA and PDMC refer
to the measurement at the community level, which match the
plant traits estimate from remote sensing at the canopy level.

Literature-derived CWMs of SLA and LDMC were calcu-
lated using our field-measured species abundance values (cover
proportions of dominant species) and SLA and LDMC val-
ues of these species reported in earlier studies conducted on
the Qinghai-Tibetan Plateau [65]–[68] (Table S1). In total 121
species were recorded in 198 plots. For 42 species SLA val-
ues and 29 species LDMC values were averaged from the
same species values in the literature [65]–[68], and 101 species
SLA values and 94 species LDMC values were averaged from
the same genus values in the literature [65]–[68]. For 19 and
26 species no published SLA and LDMC values, respectively,
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Fig. 3. Linking field and satellite measurements spatially and temporally. (a) Frequency histogram of the Coefficient of Variation (CV) of Sentinel-2 NDVI (10 m)
within nine neighboring sample points. (b) Frequency histogram of temporal gaps (days) between field measurement date and Sentinel-2 (S2) MCARI/OSAVI
acquisition date.

were available. To represent the community means of the plots,
CWMs of SLA and LDMC were calculated for all plots where
SLA and LDMC values for more than four species were avail-
able. Using this rule, we could derive CWMs of SLA for 18 plots
and CWMs of LDMC for 28 plots. In these plots, the species
for which SLA and LDMC values were available accounted for
more than 38% of plant coverage in all cases. Considering the
homogeneity rule that was applied to select the field plots, we
hypothesized that these coverages were sufficient to derive a
meaningful estimate of the CWMs of the two traits.

B. Remotely Sensed Plant Traits

1) Canopy CHL: The reflectance in the red-edge region is
mainly affected by chlorophyll density [18] and remains highly
sensitive to a wide range of chlorophyll-content variability
[19], [69]. The empirical red-edge indices adapted for Sentinel-2
data have been successfully applied to predict CHL in different
ecosystem types [15], [18], [70], [71]. In this study, we used
the red-edge bands to predict canopy CHL. These red-edge veg-
etation indices include the ratio of the Modified Chlorophyll
Absorption Ratio Index and the Optimized Soil-Adjusted Veg-
etation Index (MCARI/OSAVI), the ratio of the Transformed
Chlorophyll Absorption Ratio Index and the Optimized Soil-
Adjusted Vegetation Index (TCARI/OSAVI), the green chloro-
phyll index (CIgreen), and the red-edge chlorophyll index (CI
red-edge) [19], [72] (see Table I). We compared the performance
of these indices and chose the best index to predict canopy CHL
throughout the Qinghai-Tibetan Plateau.

2) Specific Plant Area (SPA): SPA was calculated from the
ratio between PAI and aboveground plant dry biomass. PAI
values were taken from the MODIS product MCD15A3H at
500 m spatial resolution. Aboveground biomass was estimated
using an empirical model developed from Landsat-8 vegetation
indices (see Table II) and field-measured aboveground biomass.
To match the spatial resolution of PAI (500 m) and aboveground
biomass (30 m), the aboveground biomass was resampled to
500 m using a bilinear approach. Therefore, SPA was retrieved
at a 500 m spatial scale.

3) Plant Dry Matter Content (PDMC): An empirical model
was developed from Landsat-8 vegetation indices and field-
measured PDMC to estimate PDMC for the whole Qinghai-
Tibetan Plateau.

C. Linking Field and Satellite Measurements

We linked remotely sensed vegetation indices and field-
measured plant traits temporally and spatially by extracting the
closest satellite pixels with respect to the individual field sam-
pling locations and dates. To evaluate how satellite and field
measurements match temporally, we calculated temporal gaps
(days) between the satellite acquisition dates and field-measured
dates. For 90% of the sampling sites, Sentinel-2 and Landsat-8
images were available within 20 days of field measurements.
To test the representativeness of field samples (1 × 1 m) for the
satellite pixels (30 × 30 m), we evaluated the homogeneity of
the neighborhoods (30 × 30 m) of sampling locations by cal-
culating the coefficient of variation of NDVI. Taking advantage
of the 10-m spatial resolution of Sentinel-2 reflectance in the
visible bands, coefficients of variation of NDVI of nine neigh-
bors for each sampling point were calculated (see Fig. 3). Lower
coefficients of variation values indicate a higher homogeneity of
neighborhoods. The coefficient of NDVI variation within 30-m
neighborhoods of sampling points showed that 85% of sampling
points were located in homogenous neighborhoods with a coef-
ficient of surrounding NDVI variation less than 0.1 (see Fig. 3).

D. Statistical Modeling and Validation Methods for Remotely
Sensed Plant Traits

We applied linear regression models to quantitatively link the
field-measured plant traits with Sentinel-2 red-edge vegetation
indices and Landsat-8 vegetation indices (see Tables I and II).
To evaluate model performance, the data were randomly split
into two parts, using three-quarters of the data for model cal-
ibration and one-quarter for validation. After 500 model runs,
we calculated the mean R2 and the relative Root-Mean-Square
Error (rRMSE (%)) as the ratio between RMSE and the mean
of measured plant traits. The models with the highest accuracy



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 4. Remotely sensed canopy CHL on the Qinghai-Tibetan Plateau grasslands. (a) Linear calibration model of MCARI/OSAVI to predict canopy CHL.
(b) Canopy CHL with a spatial resolution of 20 m in the 2016 peak-growing season.

(highest R2 and lowest rRMSE) were applied to the Sentinel-2
red-edge and Landsat-8 vegetation index to generate the canopy
CHL, aboveground dry biomass, and PDMC maps for the whole
study area.

E. Kernel Density Estimation for Visualization of Plant Traits
of Different Vegetation Types

To assess potential plant trait differences between the four ex-
amined vegetation types, we applied a kernel density estimation
to visualize the distribution of plant traits for the examined veg-
etation types and visually compare their trait differences [73],
[74]. This analysis was conducted for both field-measured and
remotely sensed plant traits, namely at a 1-m scale based on
field-measured plant traits and vegetation types, and at a 1-km
scale based on the remotely sensed plant traits and vegetation
types from the Chinese vegetation atlas. We used the 1-km scale
to optimize the computation time.

IV. RESULTS

A. Plant Traits

1) Canopy CHL: The red-edge vegetation index MCARI/
OSAVI was able to predict 34% of field-measured canopy CHL
variation with an rRMSE of 0.54 outscoring the CIgreen (R2 =
0.25, rRMSE = 0.57), CI red-edge (R2 = 0.31, rRMSE =
0.55), and the TCARI/OSAVI (R2 = 0.05, rRMSE = 0.65)
indices (Fig. S1). The MCARI/OSAVI underestimated the
field-measured canopy CHL at lower MCARI/OSAVI values
(MCARI/OSAVI < 0.5) but overestimated the field-measured
canopy CHL at higher MCARI/OSAVI values (MCARI/OSAVI
> 0.5) (see Fig. 4). Based on the MCARI/OSAVI index, we pre-
dicted the canopy CHL in the study area (see Fig. 4). The mean
Canopy CHL of the entire Plateau in the 2016 peak growing sea-
son was 342 mg/m2. The CHL map illustrates the decreasing gra-
dient of canopy CHL from the eastern meadow-dominated part
to the western steppes-dominant part on the Qinghai-Tibetan
Plateau (see Fig. 4).

2) Specific Plant Area (SPA): The regression model de-
veloped from Landsat-8 NDVI (R2 = 0.55, rRMSE = 0.23)
(Fig. S2) showed the highest accuracy in predicting field-
measured aboveground dry biomass in comparison with the
model developed from vegetation indices MSAVI (R2 =
0.53, rRMSE = 0.24), EVI (R2 = 0.54, rRMSE = 0.23), and
SAVI (R2 = 0.53, rRMSE = 0.24). The NDVI model was
hence used to generate an aboveground biomass map, which
was combined with the PAI product to predict SPA. The
remotely sensed SPA calculated from a ratio between PAI
(MCD15A3H) and aboveground dry biomass (Landsat-8
NDVI) showed moderate consistency with the field-measured
SPA (rRMSE = 0.49 and R2 = 0.22) (see Fig. 5). Remotely
sensed SPA are also correlated with CWMs of SLA calculated
form literature data on the Qinghai-Tibetan Plateau, with R2 of
0.2 and rRMSE of 0.15 (see Fig. 6). However, remotely sensed
SPA values were on average 53 g/cm2 lower than CWMs
of SLA.

3) Plant Dry Matter Content (PDMC): The regression
model developed from Landsat-8 EVI (see Fig. 7) (R2 =
0.53, rRMSE = 0.144) showed the highest accuracy in pre-
dicting field-measured PDMC in comparison with the models
that used MSAVI (R2 = 0.525, rRMSE = 0.144), NDVI (R2 =
0.522, rRMSE = 0.144), and SAVI (R2 = 0.526, rRMSE =
0.145) vegetation indices (Fig. S3). The predicted PDMC in the
2016 peak growing season showed an opposite spatial pattern
compared with predicted canopy CHL and SPA, with lower val-
ues in the northeast of the meadow grassland and higher values in
sparsely vegetated alpine steppe area in the West (see Fig. 7). We
found that remotely sensed PDMC correlated with the literature-
derived CWMs of LDMC with R2 of 0.1 and rRMSE of 0.23
(see Fig. 6).

B. Differences in Plant Traits Between Vegetation Types

CHL, SPA, and PDMC varied widely among different vege-
tation types (see Fig. 8). Alpine meadow had higher values and
spanned a broader range of canopy CHL and SPA than alpine and
montane steppe (see Fig. 8). The alpine steppe had the highest
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Fig. 5. Remotely sensed SPA on the Qinghai-Tibetan Plateau grasslands. (a) Scatter plot of field-measured SPA and remotely sensed SPA. (b) SPA with a spatial
resolution of 500 m in the 2016 peak-growing season.

Fig. 6. Remotely sensed plant traits and literature-derived plant traits. (a) Relationship between remotely sensed SPA and literature-derived CWMs of SLA.
(b) Relationship between remotely sensed PDMC and literature-derived CWMs of LDMC.

Fig. 7. Remotely sensed PDMC on the Qinghai-Tibetan Plateau grasslands. (a) Linear calibration model of EVI to predict PDMC. (b) PDMC with a spatial
resolution of 30 m in the 2016 peak growing season.

PDMC but the lowest variability, whereas alpine meadow had
the highest variability but lower PDMC (see Fig. 8). This pattern
was consistent at both scales (1 m and 1 km).

V. DISCUSSIONS

In this study, we found that plant traits of CHL, SPA, and
PDMC can be retrieved over the complete Qinghai-Tibetan

Plateau by statistical models developed from the field-measured
plant traits and vegetation indices derived from the Landsat-8
and Sentinel-2 data. Below, we discuss:

1) the prediction accuracy of remotely sensed plant traits and
their relation with the literature-derived CWMs of SLA
and LDMC;

2) plant adaptation strategies of vegetation types as indicated
by the observed trait differences;
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Fig. 8. Probability density functions of plant traits in different vegetation types. (a) One meter scale. (b) One kilometer scale.

3) potential implications of remotely sensed plant traits for
ecosystem functioning in future studies.

A. Plant Traits

1) Canopy CHL: We tested the capability of Sentinel-2 red-
edge vegetation indices to estimate canopy CHL on the Qinghai-
Tibetan Plateau. We estimated canopy CHL through multiplying
leaf CHL by PAI, a method often applied in croplands [55], [57]–
[60]. The method is also applicable to diverse alpine grasslands
on the Qinghai-Tibetan Plateau even though the prediction accu-
racy (R2 = 34%, rRMSE of 0.54) is lower than prediction accu-
racies typically reported for mono-species croplands [2], [19]. It
is likely that the higher plant species diversity and correspond-
ing higher spatial heterogeneity in PAI in natural grasslands are
a main reason for this. Additionally, difficulties of measuring
SPAD for small grass leaves may have affected the prediction
accuracy.

We found that among the tested red-edge vegetation indices
MCARI/ OSAVI was the best estimator of canopy CHL in alpine
grasslands, presumably because it minimizes soil background
effects and is resistant to PAI variation for low PAI values while
still being sensitive to high CHL values [2]. TCARI/OSAVI
had the lowest accuracy in predicting canopy CHL presum-
ably because it was more affected by background information

for PAI values < 0.5 [2]. A further explanation could be that
TCARI/OSAVI was found to have a nonlinear relationship with
PAI, changing from positive to negative at PAI = 0.5 [2]. This
characteristic of TCARI/OSAVI might result in lower accuracy
when applying a linear model for predicting canopy CHL.

2) Specific Plant Area (SPA): We found that remotely sensed
SPA correlated to the field-measured values of SPA (R2 = 0.22)
and the literature-based CWMs of SLA (R2 = 0.2). We found
both field-measured and remotely sensed SPA were generally
lower (−73 and −53 g/cm2) than the reference CWMs of SLA.
The reason for this underestimation was probably that SPA in-
cludes plant parts that have a lower surface to volume ratio than
leaves. Even though remotely sensed SPA and literature-derived
CWMs of SLA were obtained with vastly different methods we
still found that they were correlated (see Fig. 6).

We showed that remotely sensed SPA at 500 m scale ranges
from 10 to 231.2 cm2/g over the entire Qinghai-Tibetan Plateau,
leading to a wider range of values compared to existing studies
[36], [66], [75]. This range is within the scope of CWMs of SLA
values reported in the literature at a global scale. Kattge et al.
[76] found that field-measured herb and grass CWMs of SLA
ranged from 70 to 500 cm2/g with an average of 200 cm2/g in
the northern hemisphere.

3) Plant Dry Matter Content (PDMC): Remotely sensed
PDMC (R2 = 0.53, rRMSE = 13%) was estimated with higher
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prediction accuracy than canopy CHL (R2 = 0.33, rRMSE =
50%) and SPA (R2 = 0.22, rRMSE = 49%). This study found
that vegetation indices (e.g., EVI) correlated negatively with
PDMC (see Fig. 7). The study area covers a large spatial gradient
of precipitation (from more than 1000 to less than 100 mm/yr)
[39], which influence leaf water content and biomass. Humid
areas are characterized by higher leaf water content as well
as biomass, leading to higher EVI compared with dry area.
Therefore, EVI is positively correlated with leaf water content.
The PDMC has an inverse relationship to leaf water content
[26], thus EVI is negatively correlated with PDMC. This study
found that differences in the visible and near-infrared regions of
the spectra could explain variations of PDMC in alpine grass-
lands. Remotely sensed PDMC correlated with the literature-
derived CWMs of LDMC on the Qinghai-Tibetan Plateau (see
Fig. 6). However, the correlation was rather low and remotely
sensed PDMC values were on average 54.7 g/kg higher than the
literature-derived CWM of LDMC, presumably because non-
leaf structures—which were considered as part of LDMC in
this study—have lower water content than leaves.

B. Implication of Trait Variations Among Vegetation Types
Under Global Change

Trait differences among vegetation types indicate different
plant adaptation strategies [77]. Understanding these different
plant strategies may help us to predict how ecosystems will
respond to global change, especially for alpine plants on the
Qinghai-Tibetan Plateau, which have adapted to low temper-
atures, and are expected to have developed unique survival
strategies [31].

The trait differences between vegetation types indicate a
tradeoff between plant productivity and persistence. We found
a general East-to-West pattern of decreasing canopy CHL and
SPA values and increasing PDMC values across the Qinghai-
Tibetan Plateau. These spatial patterns of plant traits are re-
lated to the spatial distribution of vegetation types shifting from
meadow to steppe along the East-West gradient, and further cor-
respond to decreasing rainfall and increasing aridity toward the
West [78]. Alpine meadows occur in environments beneficial
to plant growth in terms of water availability and temperature
[42], allowing plants to be fast in resource capturing and nutrient
turnover [79], [80], leading to high photosynthetic rates and fast
growth rates but low tissue density. This adaptation accounts for
high CHL and SLA but low LDMC [81]–[83] of plants in alpine
meadow and indicates a tradeoff between plant productivity and
persistence [32], [84]. Alpine steppe grows in arid areas with low
water availability and low soil fertility [42], where plants adapt
to this resource-limited environment by decreasing leaf area in
order to decrease evaporation, increase tissue density, and slow
down photosynthesis and growth rate [81], [82]. This character-
istic makes plants invest less in resource acquisition and more
in structural tissue, which results in higher LDMC but lower
SLA and canopy CHL content [81], [82]. In accordance with
these hypotheses, we found that plants from alpine meadows
had higher CHL and SPA but lower PDMC values than plants
from alpine steppe for both field-measured and remotely sensed

traits (see Fig. 8). Montane steppe and montane meadow grow
at lower elevations and thus in warmer areas and are exposed
to intermediate resource availability. These environmental con-
ditions might explain why their trait values ranged between the
values of alpine meadow and alpine steppe.

Potential changes of the vegetation-type distributions and
plant traits on the Qinghai-Tibetan Plateau due to warming and
increased precipitation [37], [85], [86] could be indicated by the
natural spatial gradient of the vegetation-type distributions and
plant traits toward the East. Because the warming and wetting
trend on the Qinghai-Tibetan Plateau [83]–[85] are compara-
ble to the spatial gradient of increasing temperature and water
availability toward the East, this spatial pattern may enable a
space-for-time approach to predict the potential changes of plant
traits and vegetation types under global change. Because mead-
ows occur in warmer and wetter environments, we speculate
that the warming and increasing precipitation are more favor-
able for alpine meadows. Previous studies found that vegetation
activity has increased in recent decades on the Qinghai-Tibetan
Plateau because of the increased temperature [87], [88]. This
trend of increased vegetation activity is more significant for
alpine meadow than for the other vegetation types [89]. For the
reasons stated above, we deduced that alpine meadows might
benefit most on the Qinghai-Tibetan Plateau in a global-change
setting. This suggests higher CHL and SLA but lower LDMC
over the eastern part of the Qinghai-Tibetan Plateau in the
future.

C. Potential Implication of Remotely Sensed Plant Traits on
the Qinghai-Tibetan Plateau

We demonstrated that remotely sensed SPA and PDMC were
related to CWMs of SLA and LDMC reported in earlier studies.
Therefore, approximations between plant- and leaf-level traits
may be a straightforward way to simplify trait measurement
in alpine grasslands. Furthermore, maps of remotely sensed
plant traits as presented in this study can lay the foundation for
further ecological trait studies over large regions under global
change.

Remotely sensed plant traits of CHL, SPA, and PDMC
are predictors of ecosystem functioning and services on the
Qinghai-Tibetan Plateau. CHL and SPA are closely related to
plant nitrogen and define the photosynthetic capacity of vegeta-
tion [11], [25]; they therefore also affect the amount of carbon
uptake of the ecosystem. Photosynthetic capacity and carbon up-
take are especially important for the ecosystem on the Qinghai-
Tibetan Plateau, where the photosynthetic rate is limited by low
temperature, low air pressure, high wind speed, and high UV-B
radiation [31]. LDMC has been shown to correlate negatively
with potential relative growth rate and positively with leaf lifes-
pan, which serves as an indicator of plant resistance to physical
hazards and disturbance, plant digestibility, and rangeland qual-
ity [11]. Plants with higher LDMC tend to be physically tougher
and thus are assumed to have higher resistance but lower plant
digestibility.

Remotely sensed plant traits can hence facilitate future stud-
ies on how plants traits correlate to environmental variables and
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land-use related variables such as grazing intensity. Traits and
trait combinations vary with temperature, aridity, soil fertility,
and grazing level [79], [90]. The prominent gradient in climate,
soil properties, and grazing intensity on the Qinghai-Tibetan
Plateau offers a convenient way to study how these different en-
vironmental factors correlate to plant traits. Previous studies for
example suggested that SLA can express strong traits plasticity
[91] and LDMC is sensitive to rainfall [92]. In another study,
CHL was found to be positively correlated with grazing intensity
up to medium grazing intensities because cattle excrement is the
only external source of nutrients in these ecosystems [93] and
increases nutrient availability for plants. These findings iden-
tified in local studies could be re-examined over larger spatial
extent and in a spatially continuous way by making use of trait
maps as presented in this study. This is particularly interesting as
the environmental conditions and land-use management strate-
gies vary widely over the Qinghai-Tibetan Plateau and it would
hence be interesting to study how the relationships between
plant traits and environmental and land-use variables depend on
the location on the Plateau.

VI. CONCLUSION AND OUTLOOK

Based on statistical models between vegetation indices and
field-measured plant traits, and by taking advantage of the
Google Earth Engine cloud-computing platform, we derived
the plant traits CHL, SPA, and PDMC across the entire
Qinghai-Tibetan Plateau at the fine resolutions of 20, 500, and
30 m, respectively. Our results showed that the plant traits
of CHL, SPA, and PDMC could be predicted using satellite
data of Sentinel-2 (20 m) and Landsat-8 (30 m) as well as the
MODIS LAI product (500 m), with R2 of 0.34, 0.22, and 0.53,
respectively.

We found that the canopy CHL and SPA values of alpine
meadows were higher and had a wider range than the values
observed for the alpine steppe. On the contrary, PDMC values
were lower and more narrowly distributed in alpine meadow
than in alpine steppe. These plant trait differences among veg-
etation types indicate tradeoffs between plant productivity and
persistence, describing different plant strategies.

We demonstrated that remotely sensed and field-measured
SPA and PDMC correlated with the literature-derived CWMs
of SLA and LDMC even though the correlations were not very
strong most likely because the datasets were measured at dif-
ferent times and spatial scales. It is conceivable that the cor-
relations could be improved if measurements were conducted
at the same time and spatial scale. More research is needed to
further test the hypothesis that leaf-level trait measurement of
CWMs of SLA and LDMC are comparable to field-measured
and remotely sensed SPA and PDMC in grassland. Strengthen-
ing the hypothesis would be beneficial for simplifying the study
of plant traits and also facilitate trait estimation using remote-
sensing technologies. The latter would also enable repeated trait
assessments via remote sensing, which would enable the mon-
itoring of plant traits. This could be key for a timely identifica-
tion of potential ecosystem degradations on the Qinghai-Tibetan
Plateau.
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and P. B. Reich, “Reinforcing loose foundation stones in trait-based plant
ecology,” Oecologia, vol. 180, no. 4, pp. 923–931, 2016.

[92] R. J. Pakeman, “Leaf dry matter content predicts herbivore productivity,
but its functional diversity is positively related to resilience in grasslands,”
PLoS One, vol. 9, no. 7, pp. 1–6, 2014.

[93] L. W. Lehnert, H. Meyer, N. Meyer, C. Reudenbach, and J. Bendix,
“A hyperspectral indicator system for rangeland degradation on the Ti-
betan Plateau: A case study towards spaceborne monitoring,” Ecological
Indicators, vol. 39, pp. 54–64, 2014.

[94] T. Farr et al., “The shuttle radar topography mission,” Rev. Geophys.,
vol. 45, no. 2005, pp. 1–33, 2007.

[95] A. A. Gitelson, Y. Gritz †, and M. N. Merzlyak, “Relationships be-
tween leaf chlorophyll content and spectral reflectance and algorithms
for non-destructive chlorophyll assessment in higher plant leaves,” J.
Plant Physiol., vol. 160, no. 3, pp. 271–282, 2003.

[96] A. A. Gitelson, G. P. Keydan, and M. N. Merzlyak, “Three-band model
for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin
contents in higher plant leaves,” Geophys. Res. Lett., vol. 33, no. 11,
pp. 2–6, 2006.

[97] D. Haboudane, N. Tremblay, J. R. Miller, and P. Vigneault, “Remote
estimation of crop chlorophyll content using spectral indices derived
from hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 2, pp. 423–436, Feb. 2008.

[98] D. Haboudane, J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and
L. Dextraze, “Integrated narrow-band vegetation indices for prediction of
crop chlorophyll content for application to precision agriculture,” Remote
Sens. Environ., vol. 81, nos. 2–3, pp. 416–426, Aug. 2002.

[99] A. R. Huete, H. Q. Liu, K. Batchily, and W. Van Leeuwen, “A comparison
of vegetation indices over a global set of TM images for EOS-MODIS,”
Remote Sens. Environ., vol. 59, no. 3, pp. 440–451, Mar. 1997.

[100] A. R. Huete and R. D. Jackson, “Soil and atmosphere influences on
the spectra of partial canopies,” Remote Sens. Environ., vol. 25, no. 1,
pp. 89–105, Jun. 1988.

[101] C. J. Tucker, “Red and photographic infrared linear combinations for
monitoring vegetation,” Remote Sens. Environ., vol. 8, no. 2, pp. 127–
150, May 1979.

[102] J. Qi, A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian, “A
modified soil adjusted vegetation index,” Remote Sens. Environ., vol. 48,
no. 2, pp. 119–126, 1994.

Chengxiu Li received the B.A.Sc. degree in re-
sources science and engineering from Beijing Normal
University, Beijing, China, in 2010. She received the
M.Sc. degree in geography from Lanzhou University,
Lanzhou, China, in 2014. Her master study focused
on “monitoring glacier and snow cover change in
Western Kunlun Mountains.” She is currently pur-
suing the Ph.D. degree in grassland ecology at the
Remote Sensing Laboratories, University of Zürich,
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