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Summary

� The effects of global change on semi-natural and agro-ecosystem functioning have been

studied extensively. However, less well understood is how global change will influence fungal

diseases, especially in a natural ecosystem.
� We use data from a 6-yr factorial experiment with warming (simulated using infrared

heaters) and altered precipitation treatments in a natural Tibetan alpine meadow ecosystem,

from which we tested global change effects on foliar fungal diseases at the population and

community levels, and evaluated the importance of direct effects of the treatments and com-

munity-mediated (indirect) effects (through changes in plant community composition and

competence) of global change on community pathogen load.
� At the population level, we found warming significantly increased fungal diseases for nine

plant species. At the community level, we found that warming significantly increased

pathogen load of entire host communities, whereas no significant effect of altered precipita-

tion on community pathogen load was detected.
� We concluded that warming influences fungal disease prevalence more than precipitation

does in a Tibetan alpine meadow. Moreover, our study provides new experimental evidence

that increases in disease burden on some plant species and for entire host communities is pri-

marily the direct effects of warming, rather than community-mediated (indirect) effects.

Introduction

Plant fungal diseases play a key role in determining the rate and
magnitude of ecosystem function and service delivery across mul-
tiple spatial scales (Fisher et al., 2012). Owing to the sometimes
strong negative effects of diseases on plant photosynthesis and
growth (Fisher et al., 2012), fungal diseases can modify plant
competition, affect the assembly of natural plant communities,
and ultimately influence evolution, speciation, and extinction of
plant species (Bever et al., 2015; Parker et al., 2015; Ricklefs,
2015). Under the background of global change (Collins et al.,
2013), it is critical to know how global change factors (e.g. warm-
ing, altered precipitation, and nitrogen deposition) influence
plant species interactions, and especially fungal diseases (Altizer
et al., 2013).

Warming is generally expected to affect fungal diseases directly
in plant communities (e.g. Tapsoba & Wilson, 1997; Pfender &
Vollmer, 1999; Hannukkala et al., 2007; Siebold & Tiedemann,
2013; Launay et al., 2014). On the one hand, warming is

expected to increase pathogen fitness and transmission (Siebold
& Tiedemann, 2013), by increasing growth rates and spore pro-
duction, promoting mycelium growth, and extending the lengths
of growth and reproduction times (Harvell et al., 2002; Launay
et al., 2014). On the other hand, plant host resistance and toler-
ance might also benefit from warming simultaneously (Cavieres
et al., 2014). Hence, the net outcome of warming on plant dis-
eases depends on the independent responses of plant and
pathogen populations under a warming environment (Garrett
et al., 2006), which might be species specific.

Global change is comprised of a number of other environmen-
tal changes beyond temperature change. Precipitation patterns
are influenced by global change (Piao et al., 2010) and are poten-
tially relevant for community disease dynamics. Understandably,
fungal pathogens are likely to benefit from increased moisture,
which can promote fungal spore germination, mycelium growth,
and initiation of infection (Woods et al., 2005; Strengbom et al.,
2006). In addition, the dispersal of spores could be affected by
precipitation over short distances both positively (dispersal
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through rain-splash droplets) and negatively (removing spores
from air and leaf surfaces before they have attached) (Gigot et al.,
2014). For host plants, altered precipitation can alter fungal
infections. Most notably, drought stress can promote fungal
disease because of physiological stress responses that alter host
plant resistance, which has been demonstrated in several
agro-ecosystems (e.g. Clover et al., 1999; Mcelrone et al., 2003).
However, few experiments have explicitly tested whether the con-
clusions derived from artificial ecosystems might change in natu-
ral systems given the differences in complexity (Garrett et al.,
2006; Chakraborty, 2013).

Compared with disease dynamics in managed agro-ecosystems,
fungal diseases in natural plant–pathogen systems are subject to
more complex influences and interactions (Gilbert & Parker,
2016). While we might not expect climate change to necessarily
change the diversity of agricultural systems, warming is predicted
to change the composition and diversity of natural plant assem-
blages and affect the host density (i.e. community evenness) and
the phylogenetic structure of communities (Klein et al., 2004;
Ma et al., 2017). Similarly, altered precipitation can also drive
shifts in host density and community composition (Yang et al.,
2011; Yan et al., 2015).

Such changes in host communities can affect fungal diseases
through several mechanisms. For example, increases in host species
richness can decrease specialist fungal diseases through the dilution
effect (Mitchell et al., 2003; Keesing et al., 2006; Ostfeld &
Keesing, 2012). In particular, previous studies found that hosts
with lower proneness to diseases were more likely to be extirpated
in natural communities following anthropogenic changes, leading
to increases in community competence (Lacroix et al., 2014).
Moreover, the phylogenetic structure of host communities can
mediate diseases, given the probability that a pathogen can infect
two host species decreases with their phylogenetic distance (Gilbert
& Webb 2007, Parker et al., 2015). For individual plant species in
a density-dependent transmission system (e.g. plant-foliar fungal
pathogens), shifting host density can influence fungal diseases
independent of global change (Mitchell et al., 2002; Ostfeld &
Keesing, 2012). However, few studies have explicitly tested the rel-
ative importance of these mechanisms across global change factors.

To address this knowledge gap, we implemented a 6-yr factorial
experiment with warming and altered precipitation in an alpine
meadow of the Tibetan Plateau to test global change effects on the
foliar fungal diseases at the population and community levels, and
to evaluate the relative importance of warming and altered precipi-
tation on both population-level disease severity and community
pathogen load based on data from the final year (i.e. 2016) of this
long-term experiment. We focused on foliar fungal pathogens,
given their high prevalence in our study area and in terrestrial
ecosystems globally (Fisher et al., 2012; Liu et al., 2016). More-
over, fungal pathogens are thought to be relatively sensitive to
global change (Garrett et al., 2006), providing an ideal system to
test for the effects of warming and precipitation on ecological
dynamics in grasslands.

In addition, we defined the effects of changes in plant commu-
nity composition (and thus also changes in percentage cover of
individual plant species), species richness, evenness, and

phylogenetic diversity as the ‘community-mediated (indirect)
effects’, which act on the fungal diseases though plant community
diversity (Hantsch et al., 2014; Liu et al., 2017). We measured
host plant community composition, diversity, and proneness (i.e.
the expected community pathogen load according to community
constituent hosts) in each experimental treatment to investigate
the following: first, the influence of experimental warming and
altered precipitation on foliar fungal diseases of both individual
host plant species (population level) and entire plant communities
(community level) after 6 yr of exposure; and second, the impor-
tance of community-mediated (indirect) effects and direct effects
of experimental warming and altered precipitation in driving the
foliar fungal diseases at the population and community level.

Materials and Methods

Study site

We performed our field experiment in the eastern part of Qing-
hai–Tibetan Plateau, at the Haibei National Field Research Sta-
tion in the Alpine Grassland Ecosystem in Qinghai Province,
People’s Republic of China (101°190E, 37°370N; 3215 m above
sea level). The mean annual temperature is �1.1°C, and the
mean annual precipitation is 488 mm (minimum 353 mm and
maximum 610 mm over the past 30 yr of precipitation monitor-
ing; Zhao & Zhou, 1999), 80% of which falls during the short
growing season (May–September) (Ma et al., 2017). The nitro-
gen-limited soils are classified as ‘Mat-Cryic Cambisols’ (Chinese
Soil Taxonomy) or ‘borolls’ (USDA Soil Taxonomy) soils (Lin
et al., 2016). The grassland vegetation is a typical alpine meadow,
which is dominated by some genera of perennial herbaceous
plants, such as Elymus, Gentiana, Kobresia, Poa, Saussurea, and
Stipa (see Supporting Information Table S1 for the entire plant
species list). The vegetation height is quite variable, with the
tallest species being some of the grasses (c. 60 cm, e.g. Elymus
nutans and Helictotrichon tibeticum) and the shortest species
being some of the forbs (c. 3 cm, e.g. Viola kunawarensis), and
the mean vegetation height is c. 30 cm in control plots. The dom-
inant animals are heavily influenced by anthropogenic land use
and include sheep, yaks, horses, and ants.

Our study system contains foliar fungal pathogens with differ-
ent host ranges from a single plant species to an entire family
(Zhang, 2009; Liu et al., 2016, 2017; Table S1). Fungal leaf spot
is the most common group of foliar fungal diseases, and the
whole pathogen community is dominated by some genera of
Ascomycota and Basidiomycota, such as Ascochyta, Puccinia, and
Trichometasphaeria (Table S1).

Experimental design

A full description of our experiment is provided in Lin et al.
(2016), Zhang et al. (2016), Ma et al. (2017), and Liu et al.
(2018), but we provide a brief synopsis here. We established 36
2.2 m9 1.8 m plots with a 4-m buffer zone between the plots in
July 2011, and grazing was permitted only during winter. Our
experiment is a randomized complete block design (N = 6 per
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treatment combination) with temperature and precipitation as
main treatment factors; the plots are designated as control (i.e.
dummy installations; see later), decreased precipitation by 50%,
increased precipitation by 50%, warming at c. 2.0°C, warming
with decreased precipitation, or warming with increased precipi-
tation (six treatments for each block), resulting in six treat-
ments9 six replicates (blocks) to give 36 plots, and the
treatments were applied throughout the year (even in winter).
Methodologically, many studies have simulated warming using
transparent, reinforced-plastic, open-top chambers (e.g. Klein
et al., 2004), but open-top chambers themselves might directly
decrease foliar fungal diseases by blocking the transmission of
spores (Thompson & Drake, 1994; Liu et al., 2016). For this rea-
son, we used two parallel infrared heaters (1200W, 220 V, 1 m
long, and 0.22 m wide) hung 1.5 m above the ground (c. 120 cm
above the vegetation) to increase the soil temperature in the top
5 cm layer by c. 2.0°C above ambient temperature throughout
the year, resembling warming scenarios for this area by 2050–
2100 AD (Collins et al., 2013), and infrared heaters increased air
temperature by c. 0.8°C (air flow could take away lots of heat) on
average at 30 cm from the soil surface. Infrared heaters can warm
the plot with few edge and coverage effects (Kimball, 2005).

Four V-shaped transparent Panlite® sheet channels (covering
50% of the plot base area) were set above the infrared heaters in
the decreased precipitation plots. The rainwater collected (50%
of the ambient precipitation, which reflected the lower and upper
bounds of mean annual variations in precipitation from the past
30 yr) from decreased precipitation plots was added to the
increased precipitation plots manually after each precipitation
event by spraying bottle. Dummy installations of heaters (no
warming) and V-shaped transparent channels (with bottom
opening) were used all together in control plots and other nontar-
get plots (plots without a certain treatment; e.g. V-shaped trans-
parent channels with bottom opening were also used in
experimental warming only plots) to control for the shade effects
from installations themselves. In addition, 50 cm iron sheets were
buried along the edge of each plot to prevent the underground
movement of water and reduce surface run-off between plots (Lin
et al., 2016; Ma et al., 2017; Liu et al., 2018).

Sampling

Sampling was conducted in the sixth year of this long-term
warming9 precipitation experiment, which should be sufficient
time for the effects of experimental treatments on foliar fungal
diseases to emerge. In August (the peak of the growing season)
2016, we established a 0.59 1.5 m2 quadrat (with 12
0.259 0.25 m2 grid cells) at the center of each plot to detect
individual plant species percentage cover and species richness,
since the percentage cover was more relevant to fungal pathogen
transmission than the number of individuals was (Zhu et al.,
2000). Then we recorded the percentage cover of each plant
species and species richness in each grid cell by visual estimation.
Thus, the individual plant species percentage cover in each plot
was calculated as the average relative cover of 12 grid cells, so the
sum of total percentage cover in each plot might exceed 100%

mainly because of the plant species overtopping, and the commu-
nity-level species richness was calculated as total number of
species across grid cells.

We observed a total of 54 plant species across 36 plots in our
experiment in 2016 (Table S1). From this, the 38 most abundant
plant species that constituted > 90% of the cover were measured
for disease severity, although their appearance in every plot was
not guaranteed. A previous study showed that experimental
warming and decreased precipitation had negative effects on
plant species richness and positive effects on plant species domi-
nance, and experimental warming also lowered plant community
biomass stability by reducing the degree of species asynchrony
rather than plant species diversity over time (Ma et al., 2017).

We recorded disease severity following the methods provided
in Liu et al. (2016). In brief, we recorded disease severity (esti-
mated visually using cards with digitized images of leaves of
known disease severity) on leaf replicates. For the 38 most abun-
dant plant species in our study site, we recorded leaf-level disease
severity (percentage of the leaf area covered by fungal lesions) and
visually assessed the presence of pathogen groups (Table S1) on
25 leaves, with five from each of five randomly selected stems, for
each plant species in each plot (measured from the entire
2.29 1.8 m2 plot). For species with no more than five individu-
als or 25 leaves, we examined all the leaves available. Then we cal-
culated population-level disease severity index Vi as the average
disease severity of the 25 leaves for each plant species in each plot
we checked. We also collected 5–10 samples of infected plant tis-
sue per plant species in the same study site in August 2016 to
confirm the groups of the pathogens (i.e. fungus-caused leaf-spot
disease and blights, rusts, smuts, powdery mildews, and downy
mildews) in the laboratory using an Olympus light microscope
(see Table S1 for preliminary results); taxonomy mainly followed
previous studies in this site (e.g. Zhang, 2009).

Measures of community pathogen load

We defined community pathogen load l as follows:

l ¼
PS

i¼1 aiVi
PS

i¼1 ai

where S is the total number of host plant species and ai is the per-
centage cover of plant species i, and Vi is the severity index. Com-
munity pathogen load l has been widely used in plant disease
ecology and is considered a good indicator of community fungal
diseases (Mitchell et al., 2002; Hantsch et al., 2013, 2014; Liu
et al., 2016, 2017).

Within warming and altered precipitation treatments, commu-
nities might differ in composition (the identity of certain host
plant species present), which could influence community
pathogen load. To test how much variation in community
pathogen load was explained by the variation in plant species
composition between plots and to avoid any confounding effects
of warming or altered precipitation, we defined a ‘disease prone-
ness index’ (hereafter referred to as Pi) as the average severity
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index Vi in the six control plots of the specific plant species i. We
then calculated a ‘community proneness index’ (hereafter referred
to as p) for each plot by calculating a host percentage cover-
weighted average of the Pi over all plant species per plot (Mitchell
et al., 2003):

p ¼
PS

i¼1 aiPiPS
i¼1 ai

p is the expected community pathogen load according to com-
munity constituent hosts, and a high p means a high community
capacity to support diseases (Mitchell et al., 2003). Although p is
not exactly the same as community competence because of the
possible changes in plasticity of host plants and pathogens under
various treatments, it is rational to use community proneness
index to evaluate community-mediated (indirect) effects (due to
changes in plant community only) of global change on fungal
diseases (Liu et al., 2017).

Analysis

Population-level disease severity To evaluate the differences of
each plant’s Vi (disease severity indices of individual plant
species) among different treatments, we employed Tukey’s hon-
est significant difference (HSD) test for multiple comparisons at
the P < 0.05 level (Table S2). Then, general linear mixed-effects
models were used to evaluate focal plant’s percentage cover
(Cover), warming (W), precipitation (P) and their interaction
effects on each plant’s Vi, with ‘block’ as random effect. These
general linear mixed-effects models were built using the LMER

function in the R package LME4, and the corresponding F- and P-
values were derived from the ANOVA function.

For each plot, we calculated host plant species richness Sh and
Shannon’s evenness index Hh

0 for host plant community evenness
using the function DIVERSITY in the R package VEGAN. Then we
estimated plant community phylogenies based on rbcL and matK
sequences, following the methods provided in Liu et al. (2015).
In brief, we transformed the phylogeny to an ultrametric tree
with the CHRONOS function in the APE package (Paradis et al.,
2004) and then calculated three measures of phylogenetic diver-
sity in the PICANTE package (Kembel et al., 2010): Faith’s PD
(hereafter PD), mean pairwise distance (MPD), and mean nearest
taxonomic distance (MNTD). Among these three measures, PD
was the best predictor for community pathogen load l, so we only
included PD in the following analysis, given the collinearity
between them.

To select the best variable in predicting Vi with a multimodel
inference approach, we employed general linear mixed-effects
models for disease severity index Vi of each plant species as a
function of host plant species richness Sh, Shannon’s evenness
index for host community Hh

0, community proneness p, phyloge-
netic diversity PD, focal plant percentage cover (Cover), warming
treatment W, altered precipitation P, and combination of warm-
ing treatment and altered precipitation (W9 P). We had to
avoid multiple variables appearing in the same model, given

collinearity between those variables (Fig. S1). In particular, only
21 (see Table 1 for species name) out of 38 plant species
(Table S3) could be analyzed (i.e. certain species found in at least
nine plot-level replicates; otherwise, statistical parameters cannot
be calculated) with the multimodel inference approach. We cal-
culated the information-theoretic Akaike information criterion
corrected for small sample sizes (AICc) using the AICC function to
evaluate relative model support for each model we built. We cal-
culated the likelihood-ratio based pseudo-R2 (Pseudo R2) as a
measure of the model’s goodness-of-fit for each model (Naka-
gawa & Schielzeth, 2013), and the pseudo-R2 was derived from
the R.SQUAREDLR function in the MUMIN package.

Community pathogen load To evaluate the differences of com-
munity pathogen load l among different treatments, we
employed Tukey’s HSD test for multiple comparisons at the
P < 0.05 level. General linear mixed-effects models were used to
evaluate warming, altered precipitation and their interaction
effects on l (log-transformed to achieve normality), in which
warming W and precipitation P were treated as fixed effects, and
‘block’ as random effect using the aforementioned methods. We
also plotted the l relative to the different treatments using box-
plots. In addition, general linear mixed-effects models were also
used to evaluate warming, precipitation, and their interaction
effects on the various community-level indices (Sh, Hh

0 and p)
with the aforementioned methods.

Given the collinearity between various community-level indices
(Sh, Hh

0, PD and p) and treatments (warming and altered precipi-
tation) (Fig. S1), we also tested the relationships between the com-
munity pathogen load l and the various community-level indices
in the six control plots. We set l as the response variable and the
various community-level indices as the independent variable in a
series of simple linear models. We used the information-theoretic
evidence ratio ER =wAICc[slope model] : wAICc[intercept-only
model], where wAICc is the AICc weight, as an index of relative
support for the linear slope model vs the intercept-only (null)
model; when ER > 1.5, we deemed that there was evidence to sup-
port the slope model (Burnham et al., 2011). We also calculated
the AICc, wAICc based on the aforementioned methods for each
linear model, and De, the percentage deviance explained in the
response variable, as an index of each model’s goodness-of-fit
(Burnham et al., 2011).

Factors influencing community pathogen load To identify the
most parsimonious model (i.e. greatest explanatory power for the
fewest number of predictors according to wAICc) between com-
munity pathogen load l and the predictors (Sh, Hh

0, p, PD, warm-
ing treatment, and altered precipitation), we constructed a series
of generalized linear mixed-effects models with ‘block’ as random
effect, and Sh, Hh

0, p, PD, warming, and precipitation as fixed
effects using the GLMER function in the R package LME4. We cal-
culated the Spearman rank–order correlation between indices we
considered using the COR.TEST function. We validated the use of a
‘gamma’ family (link = ‘log’) for the modelled error distribution
based on the normalized scores of standardized residual deviance.
We calculated AICc and the likelihood-ratio based pseudo-R2
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(marginal R2) as a measure of the model’s goodness-of-fit for each
model (Nakagawa & Schielzeth, 2013).

We constructed a piecewise structural equation model (piece-
wise SEM; Lefcheck, 2016) to test for the direct treatment effects
and indirect effects through changes in the host plant communi-
ties on pathogen load l (Fig. S2). Before fitting the piecewise
SEM, community pathogen load l was log-transformed to
achieve normality (Laforest-Lapointe et al., 2017). Our piecewise
SEM comprised a series of linear mixed-effects models, with
‘block’ as random effect. The full piecewise SEM included the
warming, altered precipitation, and their interaction (by dummy-
coding the interaction) effects on four host plant community
mediators (Sh, Hh

0, p, PD), and both the direct treatment effects
and host plant community-mediated (indirect) effects on com-
munity pathogen load l.

In addition, we compared AICc (DAICc) between full and
final (reduced) piecewise SEMs and calculated the standard-
ized path coefficients (scaled by their mean and standard
deviation) and corresponding significance (P values) for both
full and final models. We evaluated the overall fit of both
full and final models using the v2 test and AICc in the R
package PIECEWISESEM. All statistical analyses were performed
using R v.2.15.1 (R Development Core Team, 2015).

Data accessibility

The data supporting this article are available to all interested
researchers upon request.

Results

Population-level disease severity

Based on general linear mixed-effects models with focal plant per-
centage cover (Cover) as a covariate, warming treatment
increased nine out of 38 most abundant plant species’ Vis; by
contrast, altered precipitation increased only one species’ Vi

(Tables 1, S3). For the multimodel inference approach, warming
treatment (W) was the best predictor of Vi for eight out of 21
(38.10%) host plant species, whereas focal plant percentage cover
(Cover) was the best predictor of Vi for only one (4.8%) species
(Table S4).

Community pathogen load

Warming outweighed altered precipitation in driving commu-
nity pathogen load l (Table 2). The community pathogen
loads l of the warming, warming with decreased precipitation,
and warming with increased precipitation treatments were
higher than controls, and there were no significant differences
of l between decreased precipitation, increased precipitation,
and control based on Tukey’s HSD test for multiple compar-
isons (Figs 1, S3). Warming treatment significantly increased l
(P < 0.001, F = 18.03), and there was no significant effect of
altered precipitation (P = 0.322, F = 1.19), whereas there was

a marginally significant effect of their interaction on commu-
nity pathogen load (P = 0.098, F = 2.56) based on general lin-
ear mixed-effects models (Table 2). In plots that were not
warmed, increased precipitation and decreased precipitation
resulted in 69% and 139% greater pathogen load respectively
than in the control. However, warmed plots exhibited a
nearly 201% increase in l, regardless of the precipitation
treatment (Fig. S3).

At the community level, in the general linear mixed-effects
models we built, both warming and altered precipitation
decreased Sh, Hh

0, and PD, whereas there were no effects of the
interaction between warming and precipitation on diversity mea-
sures (Table 2). In particular, plant species richness ranged from
26.33� 1.45 in warming9 decreased precipitation plots to
35.83� 0.87 in increased precipitation plots, compared with
35.67� 0.92 in control plots. In addition, warming, but not pre-
cipitation, increased the community proneness index p
(P = 0.011, F = 7.54; Table 2).

Factors influencing community pathogen load

In generalized linear mixed-effects models, only PD (AICc =
145.858, wAICc = 0.343, marginal R2 = 0.04) provided a
slightly better fit than the intercept-only (null) model (AICc =
146.746, wAICc = 0.221) in explaining community pathogen
load l (Table 3; phase 1: community-mediated (indirect)
effects). However, this pattern disappeared in the piecewise
SEM analysis after accounting for the direct effects of warm-
ing and altered precipitation treatments (Fig. 2). Furthermore,
there were no significant relationships between community
pathogen load l and various community-level indices (Sh, Hh

0,
PD, and p) based on simple linear models across six control
plots (Fig. S4), indicating that community composition also
has no significant effect on community pathogen load in con-
trol plots. These results confirmed that community-mediated
(indirect) effects of global change factors played a relatively
poor role in driving community pathogen load l. The most
parsimonious treatment predictor was warming treatment
(AICc = 139.558, wAICc = 0.740, marginal R2 = 0.197), fol-
lowed by ‘~ P +W + P9W’ (marginal R2 = 0.393), but
altered precipitation was worse than the intercept-only (null)
model, indicating experimental warming outweighs altered
precipitation in driving l (Table 3; phase 2: treatment effects).

In the full piecewise SEM (standardized path coefficients are
given in Table S5), warming and altered precipitation did not
interactively affect either community pathogen load l or host
plant community mediators (Sh, Hh

0, PD, and p) significantly
(Fig. S5). We then reduced the full model by removing this
interaction term, yielding the final (reduced) model (Fig. 2,
Table S6), which adequately fitted the data: v2 = 5.84, df = 4,
P = 0.211, AICc = 66.17, DAICc = 9.68 (compared with the full
model), and explained c. 38% of the variance of l (marginal
R2 = 0.38). In the final model, warming treatment (standard-
ized path coefficient b = 0.652, P = 0.004), rather than altered
precipitation (b = 0.065, P = 0.747), increased l (Fig. 2).
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Although both warming treatment and altered precipitation
significantly changed Sh and Hh

0, with the warming treatment
increasing community proneness p significantly (b = 0.343,
P = 0.010), Sh (b =�0.050, P = 0.895), Hh

0 (b = 0.294,
P = 0.451), PD (b =�0.337, P = 0.115), and p (b =�0.127,
P = 0.447) did not significantly influence l after accounting
for the direct effects of warming and altered precipitation
treatments (Fig. 2). The full piecewise SEM and the final (re-
duced) model are qualitatively similar, which further revealed
that warming affected l more than precipitation did and that
the direct effects of warming treatment, rather than indirect
effects of shifts in host plant community composition,
drove l.

Discussion

By integrating information on community composition and
foliar fungal diseases in a 6-yr factorial experiment in an alpine
meadow, we provide strong empirical evidence that warming
increases disease prevalence on nine individual plant species (pop-
ulation level) and entire host communities (community level).
Further, we show that there is no significant effect of altered pre-
cipitation on community pathogen load. We conclude that
experimental warming outweighs altered precipitation in driving
foliar fungal diseases under the background of global change in
Tibetan alpine meadows where our study site is located.
Although both warming and altered precipitation significantly

Table 1 General linear mixed-effects model results for the effects of warming treatment, altered precipitation, and their interaction on disease severity
index of each plant species.

Plant species

Warming Precipitation Warming9 Precipitation

F P value F P value F P value

Aster tataricus 29.40 < 0.001 0.08 0.784 2.46 0.137
Saussurea pulchra 6.26 0.020 0.56 0.464 0.76 0.392
Medicago ruthenica 0.41 0.528 2.83 0.106 6.29 0.020
Tibetia himalaica 8.92 0.007 1.06 0.316 1.38 0.254
Thermopsis lanceolata 1.65 0.265 0.00 0.951 0.35 0.582
Gentiana farreri 1.24 0.280 0.51 0.486 4.30 0.053
Gentiana pudica 0.05 0.826 0.23 0.638 0.35 0.567
Gentiana straminea 0.61 0.447 0.56 0.463 0.27 0.611
Elymus nutans 0.01 0.936 3.81 0.072 1.23 0.286
Festuca rubra 21.02 < 0.001 0.71 0.406 0.04 0.835
Helictotrichon tibeticum 1.95 0.177 5.85 0.024 5.38 0.030
Kobresia humilis 14.36 < 0.001 0.06 0.804 1.15 0.292
Koeleria litvinowii 0.03 0.873 0.00 0.962 0.01 0.906
Poa annua 5.29 0.036 0.57 0.463 6.18 0.028
Anemone obtusiloba 0.26 0.627 0.19 0.670 0.11 0.756
Thalictrum aquilegiifolium 7.49 0.011 0.31 0.584 0.35 0.560
Potentilla anserina 3.51 0.08 1.62 0.225 0.25 0.621
Potentilla bifurca 5.12 0.033 0.00 0.986 0.14 0.715
Potentilla nivea 1.61 0.220 0.03 0.872 0.72 0.408
Euphrasia regelii 5.56 0.028 0.00 0.978 0.23 0.635
Viola kunawarensis 0.79 0.399 0.00 0.986 0.85 0.385

Warming, precipitation, and their interaction were treated as fixed effects, focal plant percentage cover as covariate, and ‘block’ as random effect.
Twenty-one of the relationships could be tested (i.e. sufficient degrees of freedom). The full table is shown in Supporting Information Table S3. Red and
blue backgrounds indicate significant positive and negative effects, respectively. Significant effects (P < 0.05) are given in bold.

Table 2 General linear mixed-effects model results for the effects of warming treatment, altered precipitation, and their interaction on various community-
level indices.

Variable

Warming Precipitation Warming9 Precipitation

F P value F P value F P value

l 18.03 < 0.001 1.19 0.322 2.56 0.098
Sh 26.71 < 0.001 10.29 < 0.001 1.92 0.168
Hh

0 35.63 < 0.001 16.32 < 0.001 1.67 0.209
PD 6.05 0.021 4.35 0.024 0.70 0.505
p 7.54 0.011 0.58 0.567 1.17 0.328

Warming and precipitation were treated as fixed effects, and ‘block’ as random effect using the methods noted in the text (model sequence:
‘~W + P +W : P + (1|Block)’). Shown are community pathogen load l, host plant species richness Sh, Shannon’s evenness index for host community Hh

0,
community proneness p, and phylogenetic diversity PD. Significant effects (P < 0.05) are given in bold.
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changed plant community diversity, shifts in plant community
under treatments play a relatively weak role in driving commu-
nity pathogen load.

Warming has a larger effect than precipitation on fungal
diseases

The effect of experimental warming was more intense than that
of altered precipitation on fungal diseases. At the population
level, experimental warming had a positive effect on disease sever-
ity for nine out of 21 species that could be tested based on general

linear mixed-effects models. Specifically, warming increased dis-
eases on three plants in Poaceae (i.e. Festuca rubra, Kobresia
humilis, and Poa annua), with fungal leaf spot and rusts (Puccinia
genus) increasing most obviously. At the host community level,
warming plots always exhibited a higher community pathogen
load than precipitation did (both decreased and increased precip-
itation). The increases in foliar fungal diseases with warming at
both population (at least for a portion of the plant species) and
community levels are consistent with previous studies from agri-
cultural and natural ecosystems (e.g. Tapsoba & Wilson, 1997;
Pfender & Vollmer, 1999; Harvell et al., 2002; Roy et al., 2004;
Hannukkala et al., 2007; Siebold & Tiedemann, 2013; Launay
et al., 2014).

In contrast to warming, altered precipitation had no significant
effect on community pathogen load, and it influenced the disease
severity of only a very limited number of plant species (altered
precipitation only significantly increases disease severity for one
plant species based on general linear mixed-effects models). Our
results contrast with several studies that have found effects of
rainfall/moisture on fungal diseases in different systems (e.g.
Madden, 1997; Clover et al., 1999; McElrone et al., 2003;
Strengbom et al., 2006; Swinfield et al., 2012; Prev�ey & Seastedt,
2015). For instance, a previous study found that increased pre-
cipitation had a higher community pathogen load than commu-
nities with lower precipitation did (Strengbom et al., 2006),
likely because soil moisture and air moisture promote spore ger-
mination, which increases transmission (Woods et al., 2005).
Analogously, Prev�ey & Seastedt (2015) found that increased win-
ter precipitation decreased the abundance of invasive Bromus
tectorum by increasing native fungal pathogen Ustilago bullata’s
spore production, and thus transmission.

Fig. 1 Mean and standard deviation of community pathogen load by
treatment. Warming consistently increased community pathogen load.
Shown are mean � 95% confidence interval. DP, decreased precipitation;
IP, increased precipitation.

Table 3 Generalized linear mixed-effects model (family = gamma, link = log) results for community pathogen load l as a function of host plant species rich-
ness Sh, Shannon’s evenness index for host community Hh

0, community proneness p, phylogenetic diversity PD, warming treatment W, altered precipitation
P, and combination of warming treatment and altered precipitation W9 P.

Model LL k AICc DAICc wAICc Marginal R2

Phase 1: community-mediated effects

~ PD �68.284 3 145.858 0 0.343 0.040

~ 1 (null) �69.998 2 146.746 0.878 0.221 �0.058

~ Sh �68.792 3 146.875 1.007 0.207 0.012

~ Hh
0 �69.142 3 147.573 1.705 0.146 �0.008

~ P �69.725 3 148.740 2.872 0.082 �0.042

Phase 2: treatment effects

~W �65.134 3 139.558 0 0.740 0.197

~ P +W + P9W �60.251 5 141.836 2.277 0.237 0.393

~ 1 (null) �69.998 2 146.746 7.188 0.020 �0.058

~ P �69.462 3 150.924 11.365 0.003 �0.027

Phases 1 and 2 examine the relative support for all possible combinations (plant community and treatment predictors respectively) and the intercept-only
(null) model. Shown are the estimated number of model parameters k, maximum log-likelihood LL, the information-theoretic Akaike’s information criterion
corrected for small samples AICc, change in AICc relative to the top-ranked model DAICc, AICc weight wAICc (equal to model probability), and the likeli-
hood-ratio-based pseudo-R2 (marginal R2) as a measure of the model’s goodness-of-fit. Row outlines highlight single-predictor models.
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In our system (alpine meadow), the mean annual precipitation
is relatively high compared with other types of grassland, such as
Inner Mongolia grassland (488 mm vs c. 200–300 mm) (Yang
et al., 2011). Hence, we speculate that the role of warming in the
production of fungal spores and stimulated mycelium growth
was stronger than that of precipitation in our system (Garrett
et al., 2006). We believe that temperature is a more limiting fac-
tor, with the extremely low temperatures (mean annual tempera-
ture is �1.1°C and growing season is only 4 months) (Zhao &
Zhou, 1999), that limits pathogen fitness, whereas high tempera-
tures limit plant resistance expression. In addition, generation
time tends to be driven by temperature for most plant pathogens
(Helfer, 2014), and having an increase of even a single additional
generation can have large impacts on pathogen load. Overall, our
results suggest that the effects of increased temperature or altered
precipitation might depend on how those two variables currently
act to affect pathogen and host plant.

The community-mediated effects of global change
components on fungal diseases

In our system, our results suggest that increases in community
pathogen load with warming are not mediated by shifts in host
community diversity or composition. There were relatively small
contributions of shifts in host percentage cover under various
treatments on population-level disease severity, since there is no
relationship between host percentage cover and corresponding Vi

(disease severity indices of individual plant species) across all plots.
We attribute the lack of predictive power of host percentage cover
for fungal diseases to the extremely high plant species richness in
our study site (c. 30–40 plant species in a 0.59 1.5 m2 quadrat in
control plots, and > 20 plant species under various treatments even
after an experimental duration of 6 yr), where the percentage cover
for each plant species is relatively low (96.30% of a total of 54
plant species had percentage cover estimates < 5%) (Ma et al.,

2017). Given that some (nearly 50%) of the fungal pathogens in
our system are relatively specific to one genus (Zhang, 2009; Liu
et al., 2016), the physical isolation of the interception of spores by
nonhosts may play an important role and overwhelm the effect of
shifts in host density on fungal diseases (Zhu et al., 2000).

Shifts in the identity of dominant plant species under treat-
ments also play a relatively weak role in driving community
pathogen load, mainly because there were no significant
changes in percentage cover of the species that showed signifi-
cant changes of Vi under warming or altered precipitation.
This post hoc analysis provides strong evidence for the direct
effects of warming treatment, rather than indirect effects of
shifts in host plant community composition, driving commu-
nity pathogen load. Plant species that showed significant com-
pensatory increases (abundance of a certain plant species
increases with total species richness decrease in treatment
plots) in percentage cover under treatments were those with a
low disease severity index Vi, such as Medicago ruthenica in
Leguminosae. M. ruthenica has the second lowest Vi

(0.27� 0.16) in control plots than any other plant in our
system, and it did not exhibit any significant increases in Vi

under warming and altered precipitation. On the contrary, for
plant species with significant increases in fungal disease under
our treatments (e.g. F. rubra, K. humilis, and P. annua), the
relatively high disease severity could affect plant fitness, and
thus competitive ability (Fisher et al., 2012), resulting in no
significant compensatory increase in percentage cover. Hence,
we conclude that treatment-induced changes in community
pathogen load are unlikely to have been driven by the
responses of specific host populations. It is similarly unlikely
that shifts in pathogen community composition contributed
to observed increases in community pathogen load, as nearly
50% of the pathogens in our system are relative specialists
(one genus) (Zhang, 2009; Liu et al., 2016). Moreover, loss
of species from warming might result in phylogenetically

Warming

Pathogen load

Host species richness

Precipitation

Shannon's evenness index

Community proneness

Phylogenetic diversity

0.652**

0.065

0.822***

0.697***

R2= 0.38

R2 = 0.85

R2 = 0.51

R2 = 0.12

R2 = 0.46

Fig. 2 The final (reduced) piecewise structural equation model results. The final (reduced) model adequately fitted the data: v2 = 5.84, df = 4, P = 0.211,
AICc = 66.17. Numbers on arrows are standardized path coefficients (scaled by their mean and standard deviation), and asterisks indicate statistical
significance (***, P < 0.001; **, P < 0.01; *, P < 0.05). Red arrows, evidence for positive relationships; blue arrows, evidence for negative relationships; gray
arrows, insufficient statistical evidence for path coefficients (P > 0.05). Width of the arrows shows the strength of the causal relationship, and R2 is the
marginal R2, which indicates the variance explained by fixed effects in the mixed model.
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overdispersed plant communities in alpine meadows (Liu
et al., 2016); therefore, we would expect lower pathogen
spillover between closely related plants. Phylogenetically
overdispersed plant communities might offset the effects of
pathogen-mediated apparent competition to some extent,
given the relatively narrow phylogenetic host range of
pathogens in our system (Zhang, 2009; Liu et al., 2016), and
might promote the frequent positive interactions between
plant species observed in alpine meadows like ours (Chu
et al., 2008; Lyu et al., 2017).

Conclusions

Our results demonstrate that warming affects fungal diseases
more than precipitation does in alpine meadows and suggests
that increased temperature may additionally threaten ecosystem
functions and services by increasing disease risk. We also provide
new experimental evidence that the increases in disease burden
on some plant species and for entire host communities are driven
by global change directly rather than shifts in community com-
position. Our study expands our knowledge of the interface
between community ecology, global change biology, and disease
ecology, and clarifies the direct and indirect effects of warming
on plant disease of terrestrial ecosystems under global change.
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