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Abstract. The decomposition of litter from forest tree species is a fundamental process in the carbon (C)
cycle of terrestrial ecosystems and is closely related to ongoing climate change. However, the spatial distri-
bution of the forest litter decomposition rate (k) and its potential response to changing air temperature
(temperature sensitivity) remain poorly understood. Here, we estimated the spatial pattern of forest plant
k values in China by performing a random forest model based on 433 standardized k values from 124 pub-
lished studies. Nine potential predictors, including climate-related factors, vegetation characteristics, and
soil physical and chemical factors, were considered in the model. The results of spatial extrapolation indi-
cated that the average k value for China’s forests was 0.53, and the mean annual temperature (MAT) was
the most important factor. We also mapped the spatial pattern of the temperature sensitivity of the k value
(Q10) by using a moving window method. We found that the Qo values had considerable variation (from
0.05 to 11.68, 95% confidence interval, CI) across forest types and regions. The Q; values were lower in the
warmer regions (primarily in the sub-tropical evergreen forests) and higher in the semi-humid regions (pri-
marily in the temperate deciduous forests and boreal Larix forests) than those in the other regions of China.
However, the Q; values of the broadleaved forests were higher than those of coniferous forests. These
results suggest that the temperature sensitivity of the litter decomposition rate will decline under the ongo-
ing global warming. Changing patterns of precipitation will also affect not only the forest litter decomposi-
tion rate but also its temperature sensitivity.
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INTRODUCTION

The decomposition of plant litter is a funda-
mental process in energy flow and element
cycling in terrestrial ecosystems (Berg et al. 1986,
Paudel et al. 2015). The amount of carbon (C) in
forest litter is relatively low (43 Pg, 1 Pg =

10'° g), which accounts for no more than 5% of
the C storage of global forests (Pan et al. 2011). In
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China’s forests, this storage represents only 2% of
the national forest carbon storage (0.4 Pg C, Zhu
et al. 2017). Compared to other components (e.g.,
vegetation and soil), litter may be negligible in
regional C pools and budget estimates (Tang
et al. 2018, Zhu et al. 2020). However, decompo-
sition of this component is still a critical ecosys-
tem process, representing a major pathway for C
flux (Berg 2014).
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Litter decomposition is regulated by several
factors, including the quality of the litter, the
physical and chemical environments, and the
decomposer organisms (Swift et al. 1979). Cli-
mate has long been considered the dominant fac-
tor controlling the rates of litter decomposition
(Berg et al. 1993, Gholz et al. 2000). When
explaining the spatial variance in the litter
decomposition rate, the mean annual tempera-
ture (MAT) and mean annual precipitation
(MAP) have been used extensively (Meente-
meyer 1978, Gholz et al. 2000, Zhang et al. 2008,
Bonan et al. 2013). However, these variables are
not necessarily the most important factors. Dur-
ing the last two decades, numerous studies have
suggested that biotic factors might be more
important than temperature or precipitation in
explaining the variance in regional decomposi-
tion rate across various biomes worldwide
(Cornwell et al. 2008, Wall et al. 2008, Currie
et al. 2010, Bradford et al. 2014, 2016). For exam-
ple, Cornwell et al. (2008) compared 1196 decom-
position rate (k) records and found that litter
quality was the most important factor triggering
the variance in the k value within biomes world-
wide. Bradford et al. (2014) explored litter experi-
ments along a latitudinal gradient (spanning
~12° latitude) and found that fungal colonization
was a better predictor of k than was air tempera-
ture. Nevertheless, the impacts of climate on the
k of organic matter have been evaluated less
often (Prescott 2010, Garciapalacios et al. 2013,
Veen et al. 2015).

Climate has long been considered the primary
factor related to the litter decomposition rate at
the regional scale (Swift et al. 1979). Several stud-
ies have demonstrated that litter quality and soil
decomposer traits might be more important than
temperature or precipitation for controlling the
decomposition rates in regional estimates (Corn-
well et al. 2008, Currie et al. 2010, Bradford et al.
2014). Regardless, the effect of climatic factors on
k values at the regional scale has received much
attention. This attention is likely because climatic
factors also affect the chemical composition of lit-
ter and the activity of soil decomposers at the
regional scale (Stevens 1992, Liu et al. 2006,
Barcenas-Moreno et al. 2009, Bell et al. 2009).
First, the quality of leaf litter is influenced by
temperature and precipitation at the regional
scale (Liu et al. 2006). Liu et al. (2006) found that
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the nitrogen (N) concentration of forest litter
increased with MAT in Eurasia. Lower ratio of C:
N and lignin:N in the litter creates beneficial con-
ditions for decomposition. In addition, climate
determines the spatial distribution of vegetation
composition and structure and thus shapes the
distribution of different litter species (Stevens
1992, Fang et al. 2012) at the regional scale. Sec-
ond, microbial communities and their activities
are affected by climate (Barcenas-Moreno et al.
2009, Bell et al. 2009). For example, Bell et al.
(2009) demonstrated that fungal substrate activi-
ties displayed a positive correlation with soil
temperature (15 cm) in grassland ecosystems.
Therefore, climatic factors should not be consid-
ered as independent variables, as they will inter-
act with soil decomposer organisms and litter
quality and exert an indirect effect on the litter
decomposition process (Aerts 1997). In addition,
the spatial variations of climatic factors exert an
influence on the litter species richness, and fur-
ther control C and N cycling during the decom-
position process through specific interactions in
litter mixtures (Handa et al. 2014). Regardless of
whether the climate is the dominant control
affecting the rate of litter decomposition at the
regional scale, it is a fact that the k value would
be influenced directly and indirectly by the
increasing global air temperature. The extent to
which the k value responds to climate change
(sensitivity of the k value to climatic factors) and
whether this response will vary across biomes
are still unknown.

Field experiments of litter decomposition are
traditionally performed wusing the litterbag
method (e.g., Bocock and Gilbert 1957). The k
value could be quantified by the mass loss of lit-
ter with continuous sampling (Olson 1963).
Unlike the calculation of the temperature sensi-
tivity of the soil respiration rate, we could not
obtain the temperature sensitivity of the k value
at each study site. Environmental gradients
could be used to explore and quantify the influ-
ence of temperature on the k values (Gholz et al.
2000, Salinas et al. 2011). Gholz et al. (2000) per-
formed the Long-Term Intersite Decomposition
Experiment (LIDET), involving 27 L species from
28 forest sites in North and Central America dur-
ing the period of 1989-1994. They demonstrated
that MAT significantly affected the decomposi-
tion process and quantified the temperature
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sensitivity (Qo, the change in the k value given a
10°C change in temperature) of leaf and fine root
litter as 2.7 and 2.1, respectively. Salinas et al.
(2011) quantified the Q;( value of the k values of
15 species by a large-scale leaf litter transplant
experiment along an elevation gradient
(210-3025 m above sea level) in Peru. They found
that the Qyo value varied considerably from 1.3
to 5.4 across the different litter species. Limited
by methodology, there are few studies on the
sensitivity of the k value at the regional scale;
thus, the spatial pattern of the temperature sensi-
tivity of the k value is still unknown.

Almost all major forest types in the Northern
Hemisphere can be found in China, including
boreal taiga forests, the cold temperate decidu-
ous broadleaved forests, and the temperate
mixed forests in the north and the evergreen
broadleaved forests and tropical rainforests in
the south (Fang et al. 2012). In this study, we re-
calculated 433k values using the leaf litter in Chi-
na’s forests from 124 published studies (Olson
1963). We examined the climatic and biotic fac-
tors that determined the spatial distribution of
the k values. To predict the spatial patterns of the
Q1 values of the leaf decomposition rates of Chi-
na’s forests, we considered nine potential predic-
tors of the leaf litter k value, including variables
that define climatic and geographical factors
(e.g., MAT, MAP, and elevation), vegetation char-
acteristics (e.g., forest type and the normalized
difference vegetation index; NDVI), and soil
physical and chemical factors (e.g., soil pH, soil
organic C [SOC] density, soil C:N ratio, and bulk
density). Based on the distribution of the k value,
the spatial distribution of the i, value was
quantified by the moving window (21 X 21 pix-
els, 8-km resolution for each pixel) method
(Cheng 1999, Neta et al. 2010, Zhang et al. 2020).
Finally, in this study, we used the elevation gradi-
ent-based temperature sensitivity of the litter
decomposition rate to evaluate the spatial distri-
bution of the Q;q value.

MATERIALS AND METHODS

Data acquisition

We collected data from literature searches in
China National Knowledge Infrastructure
(CNKI), Web of Science (WOS), WANFANG
Data (http://www.wanfangdata.com.cn/), and
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Google Scholar (https://scholar.google.com/). The
search rules were set to TS = (“litter decomposi-
tion”) AND (“forest ecosystem”) AND
(“China”), and then, papers were selected based
on the following criteria: (1) Litter decomposition
rate was obtained from in-field experiments; (2)
litter bags were used to measure the decomposi-
tion rate; and (3) only the k value calculated
using Olson’s single exponent model could be
used directly (Eq. 1; Olson 1963).

Mt —kt
——— 1
My ¢ @

where f (y) is the decomposition time. M, is the
residual weight of the litter at time t. My is the
initial weight of the litter, and k is the decomposi-
tion rate (per year).

In the experimental studies, only the control
group was considered. For row data (including
mass loss or mass remaining), we used the Get-
Data Graph Digitizer (version 2.26) to obtain the
mass loss or mass remaining at each sampling
from each study and then re-calculated the
decomposition rate of litter by using the expo-
nent model (Eq. 1).

We finally obtained 433 k values from 124
studies, which represented the geographical
(Fig. 1) and climatic (Appendix S1: Fig. S51) space
quite well. For each study, we also recorded the
basic information, including location (latitude,
longitude, and elevation), forest type, and litter
species (Appendix S1: Table S1). Nine potential
predictors for leaf litter k were obtained, includ-
ing elevation, MAT, MAD, forest type, the NDVI,
soil pH, soil bulk density, soil organic C density
(C storage per unit area, SOC), and soil C:N
ratio. We further divided these predictors into
three groups: climate-related factors (elevation,
MAT and MAP), vegetation characteristics (forest
type and NDVI), and soil physical and chemical
factors (pH, SOC, bulk density, and C:N ratio).

Climate-related factors.—The spatial distribution
data of elevation in China (DEM) were from the
Resources and Environmental Science Data
Could Platform with a resolution of 1 km (http://
www.resdc.cn/). The MAT and MAP were syn-
thesized using monthly grid-cell data from 2006
to 2015. The monthly temperature and precipita-
tion meteorological data were collected from
2480 conventional monitoring stations (http://da
ta.cma.cn), which were used to create gridded
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Fig. 1. Distribution of the forest sites based on the litter types. The green areas represent the pixels of the for-
ests in China obtained from the digitalized 1:1,000,000 vegetation map (ECVMC 2007).

monthly products with a resolution of 8 km. An
improved thin plate spline was used to create the
products by using Anusplin 4.4 (Feng et al. 2019).

Vegetation characteristics.—The digitized
1:1,000,000 vegetation map was used to obtain
the grid-cell forest types (ECVMC 2007). We fur-
ther divided the forest types into three cate-
gories: coniferous forests, broadleaved forests,
and the mixed forests. The maximum value syn-
thesis method was used to denoise the GIMMS
NDVI data and then obtain the monthly data,
after which the annual data were synthesized
with resampling to the same resolution (8 km) as
that of the NDVI data (Tucker et al. 2005, Wang
et al. 2010).

Soil physical and chemical factors.—These four
factors were obtained from the Global Soil Data-
base (GSB) provided by Zhao et al. (2019), which
used a random forest model to estimate the indi-
cators at the global scale.

Data analysis

We analyzed the relationships between the
decomposition rate of litter and all the nine
potential predictors. First, we employed adj. R>
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and P values to compare the fitness of several
simple regression models, including linear, expo-
nential, and logarithmic regressions. Second, we
used a random forest model to simulate the spa-
tial distribution of the k values. The random for-
est model is an integrated learning algorithm
based on decision trees and can improve the pre-
diction accuracy of a single decision tree (Liaw
and Wiener 2002, Chen et al. 2015). Then, we
conducted a tenfold cross-validation (Statnikov
et al. 2008, Barnard et al. 2019) before modeling
to determine the specific values of these two
parameters (Table 1). To further analyze the
uncertainty of the model, we used the resam-
pling method to perform 500 random splits on
the dataset, and 70% of the data were extracted
as the training dataset for each segment to pre-
dict the spatial distribution of the k value; the
other 30% of the data were used for verification.
As a result, 500 random forest models were used
to calculate the standard deviation. The IncNode-
Purity index was used for the predictor impor-
tance analysis to define the importance of the
potential predictors in the model. A higher
IncNodePurity index indicates a variable has
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Table 1. Tenfold cross-validation of the random forest model.

ntree
mtry 100 200 300 400 500 600 700 800 900 1000
2 0.679 0.686 0.684 0.690 0.686 0.685 0.688 0.685 0.687 0.688
4 0.667 0.670 0.669 0.669 0.669 0.670 0.673 0.669 0.669 0.670
6 0.656 0.657 0.661 0.656 0.661 0.660 0.660 0.658 0.658 0.658
8 0.650 0.649 0.652 0.652 0.650 0.653 0.653 0.653 0.649 0.653

more importance in the model (Kuhn et al. 2008,
Alvarez-Cabria et al. 2017). Final, the partial
dependency analysis was used to help under-
stand the effects of predictors in the model
(Alvarez-Cabria et al. 2016, Cafri and Bailey
2016, Greenwell 2017). We obtained the partial
dependence relationship between variable (X)
and the dependent variable by replacing the
whole variable with its own element (X;); then,
we input the new data into the random forest
model. We finally described the relationship
between each factor and the k value by a partial
dependency plot. X; was plotted on the X-axis,
and the mean estimate was on the Y-axis (Cafri
and Bailey 2016).

Predicted spatial distribution of the Q¢ value
To calculate the Q;o value, we calculated the
temperature sensitivity coefficient (B; Eq. 2):

k=axel*T )

where T (°C) is the mean annual temperature of
each forest site. a is a fitting coefficient. The Q1
value was calculated by Eq. 3:

Qo= e 3)

Average nearest neighbor analysis was used to
determine the minimum distance for calculating
Qo (Eq. 4; Mitchell 2005):

Dy=0.5/v/n/A 4)
where Dj is the observed average nearest neigh-
bor distance, n is the number of data points, and
A is the smallest rectangle containing all data
points.

We estimated the spatial distribution of the
Q1o values by using the moving window
method. Specifically, we took the 2D, scale
(21 x 21 pixels) as the size of the window (Feng
et al. 2018, Ding et al. 2019). Within each
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window, the calculation of the Q;( value was per-
formed when at least 20 k values were available
within the 21 x 21 pixels.

Qo verification

Salinas et al. (2011) provided a different
method that used the natural elevation gradient
to calculate the Qq¢ value. We sifted through the
established database to filter out the data that
could satisfy the elevation gradient-based calcu-
lation of the Qi value. Fang et al. (2012) con-
ducted a national investigation of mountainous
forests in China. Based on the mountains, a 20-
km buffer was set as the range of each mountain,
and the range of variation in the predicted the
Q1o value in this range was calculated. The
method used to evaluate the accuracy of the Q1
value spatial distribution was affected by
whether the result calculated by the elevation
gradient fell within the range of the Qo value of
the mountain.

REsuLTs

Relationships between the k value and the
potential predictors

Across the 433 study sites, the k values ranged
from 0.15 to 1.68 (95% confidence interval, CI),
with average k values (£SD, n) of coniferous,
broadleaved and mixed litter of 0.39 (£0.21,
n =121), 0.70 (+£0.47, n = 240), and 0.60 (+0.37,
n = 73), respectively (Fig. 2a).

To separate the relative importance of different
factors for decomposition, we examined the cor-
relations between the k value and three primary
categories of potential factors, including climate-
related factors (MAT, MAP, and elevation), vege-
tation characteristics (forest types and the
NDVI), and soil physical and chemical factors
(soil pH, bulk density, soil C, and soil C:N ratio).
Climate-related  factors exerted significant

June 2021 % Volume 12(6) ** Article e03541



ZHANG ET AL.

0.6 4.0 4.0 4.0
- (a) R2=0.25 (b) R?2=0.09 (c) R2=0.15 (d)
— Mixed 30 P<0.01 3.0 P<0.01 3.0 P<0.01
>
8 0.4 ‘ %
] 2.0 2.0 2.0
o I IS ' 4
o 0.2 Mean = 0.60, SD = 0.37, n =73 x
[l 1.0 1.0 1.0
0.0 e 0.0 0.0 0.0 \
00 10 20 30 40 10 -5 0 5 10 1520 25 ¢ 1000 2000 3000 O 1000 2000 3000 4000 5000
kmean Mean annual temperature (°C) Mean annual precipitation (mm) Elevation (m)
4.0 4.0 4.0
Median (e) R2=0.10 ] R2=0.08 (9) | MAT
3.0 Mean 3.0 P<0.01 3.0 P<0.01
c A c pH
[
$ 20 A g20 20
E B ) X : ! Elevation
1.0 1.0 1
i | R NDVI
0.0 0.0 . )
Conifer  Broad Mixed 02 04 06 08 4 6 8 !
Litter type NDVI Soil pH L [SOCdensiy
4.0 4.0 N 14.0 §
R2=0.09 (h) R2=0.00 (i) @) MAP
30 P<0.01 30 P<0.01 3.0 P=0.08
< S BD
[
g 2.0 220 20 B Cimate
E ! < ! ; 7 soil I: Litter type
1.0 o 1.0 M 1.0 [ vegetation
i BT LS Lo § ’?‘.?‘3 . (k) C:N
0.0 0.0 0.0 . . . ; ;
09 10 1.1 12 13 14 15 5 10 15 20 25 30 2 4 6 8 1012 14 16 18 10.0 80 6.0 40 20 0.0
Soil bulk density (g-cm-) Soil C:N SOC density (kg-:m-2) %incNodePurity

Fig. 2. Frequency distribution of the k values (a), relationships between the k values and climate-related factors
(b—d), vegetation characteristics (e, f) and soil physical and chemical factors (g-j), and the relative importance of
these predictors (k). We used the impurity reduction values calculated from the split variables of all tree nodes to
compare the importance of the different factors. Different letters (A and B) denote significant differences at
P < 0.05 across different litter types via one-way analysis of variance. Abbreviations are MAT, mean annual tem-
perature; MAP, mean annual precipitation; NDVI, normalized difference vegetation index; SOC, soil organic
carbon.

influences on the k value across various forest The performance of the potential predictors

types (Fig. 2b—d). Briefly, the k value increased According to the tenfold cross-validation, the
exponentially with MAT (R®> = 0.25, P < 0.01), candidate features and the decision trees were 2
and the Qo value for these k values was 1.3. The and 400, respectively, when the adj. R* obtained
k value was also positively and logarithmically the highest value. We established a random for-
correlated with MAP but negatively correlated est model to estimate the spatial distribution of
with elevation. In addition, the k values of broad- the k value in China, and the model explained
leaved and mixed litter were significantly higher = 74% of the variance in the k value. The predictor
than that of coniferous litter across these forests importance analysis suggested that MAT was
(Fig. 2e) and positively correlated with the NDVI  the optimal factor for predicting the spatial
(Fig. 2f). Soil physical and chemical factors variance of the k value in the random forest
exerted a significant influence on the k value. The model (Fig. 2k).

k value decreased significantly with soil pH but We used partial dependence analysis to further
increased with soil bulk density (Fig. 2g-h). The evaluate the performance of a specific predictor
litter decomposition rate increased slightly with on litter decomposition when the effects of the
the soil C:N ratio (Fig. 2i). No significant increas- other predictors were under controlled for
ing trend was detected between the k value and (Fig. 3). The relationships between the k value
SOC density (Fig. 2j). and the nine potential predictors under the
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Fig. 3. Partial dependency analysis of the random forest model. Values show the influences between the k
value and the (a) MAT, (b) soil pH, (c) elevation, (d) NDVI, (e) SOC density, (f) MAF, (g) soil bulk density, (h) veg-
etation type, and (i) soil C:N ratio when the other factors were controlled in the random forest model. MAT, mean

annual temperature; NDVI, normalized difference vegetation index; SOC, soil organic carbon; MAP, mean

annual precipitation.

partial dependence analysis were similar to those
of the observed simple models (Fig. 2). The trend
between the k value and the MAT was also simi-
lar, with an exponential and positive relationship
(Fig. 3a). The k value reached its maximum and
minimum when the pH was 4.5 and 5.5, respec-
tively (Fig. 3b). The k value decreased with eleva-
tion (Fig. 3c) but increased with the NDVI
(Fig. 3d), SOC density (Fig. 3e), and MAP (Fig. 3
f). The k value decreased suddenly when the soil
bulk density reached 1.2 g/cm® (Fig. 3g). For the
different forest types, the highest k value was
detected for the broadleaved forests and the low-
est for the coniferous forests (Fig. 3h). However,
it should be noted that the positive relationship
between the k value and soil C:N ratio detected
by a linear regression model (Fig. 2i) changed to
a slight negative relationship after the partial
dependence analysis (Fig. 3i).
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We then mapped the spatial distribution of
the k value in China’s forests at a resolution of
1 km (Fig. 4). Based on these calculations, the
average k value in China’s forests was estimated
as 0.53 = 0.15 per year and showed consider-
able variation across forest types and regions.
The average k values of coniferous, broad-
leaved, and mixed forests were 0.47 £ 0.14,
0.59 £ 0.14, and 0.52 + 0.09 per year, respec-
tively (Fig. 4). Geographically, the k value in
China’s forests was estimated to be 0.65 + 0.15
in the eastern region, 0.58 & 0.11 in the south-
central region, 0.52 &+ 0.09 in the northeastern
region, 0.51 £ 0.18 in the southwestern region,
0.45 £ 0.10 in the northern region, and
0.39 £ 0.11 in the northwestern region of China.
In addition, we evaluated the uncertainty of the
k value at the pixel level and calculated the
standard deviation (SD) based on 500 Monte
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Fig. 4. Spatial distribution of the k value in China’s forests.

Carlo simulations (Appendix S1: Fig. S2). The
SD ranged from 0.02 to 0.11 (95% CI), with an
average of 0.05 per year.

Estimating the temperature sensitivity of the
decomposition rate

To quantify the spatial distribution of the tem-
perature sensitivity of the k value, we calculated
the exponential relationships between the k value
and MAT by using the moving window method
(Fig. 5). The Qo value had a considerable spatial
variance from 0.05 to 11.68 (95% CI), with an
average value of 1.76 across China’s forests.
Nearly three-quarters of the grid-cell Q¢ value
was less than the experience value (2.0). The
average (1o value was lower in coniferous forests
(1.56) and mixed forests (1.68) than in broadleaf
forests (2.01). Geographically, the largest regional
Q1o value (2.40) occurred in the forests of the
northeastern region, followed by the northern
(2.21), eastern (1.54), southwestern (1.47), and
northeastern (1.46) forests. The smallest Qg
value occurred in the forests of south-central
China (1.26). For each forest type, the regional
Q10 values of broadleaved forests were 1.51, 2.33,
2.32, 1.66, 1.46, and 1.67 in the northwestern,
northern, northeastern, southwestern, south-

ECOSPHERE ** www.esajournals.org

central, and eastern regions, respectively. The
regional ;o value in coniferous forests of the
northwestern (1.42), southwestern (1.38), south-
central (1.18), and eastern (1.50) regions was
smaller than the experience value (2.0), and the
Q1o value in the northeastern region was the
highest of all regions (2.61). According to the dis-
tribution of the ;¢ value at the climatic space in
relation to the MAT and MAP (Appendix S1:
Fig. S3), the relatively lower Q¢ values primarily
occurred at the warmer regions where the MAT
ranged from 15° to 20°C, while the higher Qg
values occurred at the semi-humid regions
(where the MAP ranged from 400 to 800 mm).

DiscussioN

The k value and potential predictors

We summarized 433 leaf litter k values from
124 published studies in China’s forests and esti-
mated the average k value as 0.53 per year based
on an exponential decay model (Olson 1963, Sil-
ver and Miya 2001). This average k value for Chi-
na’s forests was lower than that calculated for
global forests (0.67; Zhang et al. 2008). For the
different litter types, we found that the k value of
the broadleaved leaf litter (0.59) was significantly
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2001).

higher than that of the coniferous leaf litter (0.47)
but not significantly different from the mixed
(0.52) leaf litter, which is consistent with the find-
ings from global estimates (Zhang et al. 2008).
Weedon et al. (2009) stated that the decompos-
ability of broadleaved litter was higher than that
of coniferous litter due to the relatively lower lig-
nin concentration and higher N and phosphorus

ECOSPHERE % www.esajournals.org

(P) concentrations in the former than those in the
latter (Cornwell et al. 2008, Weedon et al. 2009).
Numerous studies have demonstrated that litter
quality, including concentrations of lignin and N,
and the ratios of C:N and lignin:N influenced the
decomposition rate of litter at the local scale
(Berg et al. 1993, Hattenschwiler et al. 2005, Yue
et al. 2017). At the regional scale, these litter traits
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played key roles in controlling decomposition
rates across various biomes (Cornwell et al. 2008,
Currie et al. 2010, Hu et al. 2018).

Climatic predictors have long been considered
the predominant factors that influence the k
value at regional or global scales (Berg et al.
1993, Vitousek et al. 1994, Aerts 1997, Gholz et al.
2000, Zhang et al. 2008). Our results suggested
that the spatial distribution of the k value chan-
ged significantly with MAT and elevation. The
importance analysis indicated that MAT was the
most important factor in the models among the
nine potential predictors. According to the 500
model estimates, the k values ranged from 0.27
per year in the northeastern boreal forests to 0.90
per year in the southern tropical forests of China
(95% CI), with an average value of 0.53 per year.

Previous studies suggested that biotic factors
are also important driving predictors of the litter
decomposition process (e.g., Colteaux et al.
1995, Wardle et al. 1997, Trofymow et al. 2002,
Hattenschwiler et al. 2005, Barlow et al. 2007,
Makkonen et al. 2012). For different forest types,
the k values in the broadleaved forests (including
broadleaved, coniferous and their mixed leaf lit-
ters in the broadleaved forests) were higher than
those in the coniferous forests. Geographically,
broadleaved forests were mainly distributed in
the south, while coniferous forests were mainly
distributed in the north of China. The k values
were also higher in the broadleaved forests than
in the coniferous forests in the six regions of
China (Appendix S1: Table. S2). Broadleaved for-
ests and coniferous forests in the eastern region
had the highest k values (0.80 and 0.60, respec-
tively), and those in the northwestern region had
the lowest k values (0.49 and 0.31, respectively)
compared with other regions.

Soil pH can strongly influence the decomposi-
tion process by changing the composition and
diversity of fungal and bacterial communities
(Rousk et al. 2010), especially fungi, which
assume dominant roles in the decomposition of
lignin (Kuehn et al. 1999). The white-rot fungus
was the best choice for lignin decomposition, and
its abundance decreased with increasing soil pH
(Rousk et al. 2010). The relationship between the
k value and soil pH in the partial dependence
plot also showed that the k value decreased with
increasing soil pH (Fig. 3b). According to the lin-
ear regression, the soil C:N ratio showed a
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slightly positive relationship with the k value.
However, when controlling for other factors, the
positive relationship between the decomposition
rate and soil C:N ratio no longer existed or even
showed a slight negative correlation (Fig. 3i).

Spatial patterns of Q¢

Previous studies have quantified the tempera-
ture sensitivity of forest soil respiration at local,
regional, and global scales (Boone et al. 1998,
Bond-Lamberty and Thomson 2010, Li et al.
2020), but few studies have focused on the tem-
perature sensitivity of forest litter decomposition
(Salinas et al. 2011, Bothwell et al. 2014). Limited
by the litterbag method, the temperature sensi-
tivity of the k value was difficult to quantify.
Environmental gradient estimates or cultivation
experiments in the laboratory could be used to
quantify the Qqo value of the decomposition rate
of litter (Salinas et al. 2011, Bothwell et al. 2014).

Several studies estimated the Qo value of the
decomposition rate along an elevation gradient
(Salinas et al. 2011, Bothwell et al. 2014). In this
study, the Qo values of the broadleaved forests
were higher than those of the coniferous forests.
For the different regions, the average Qj( value
(2.4) in the northeastern region was higher than
that in the other regions (ranging from 1.3 to 2.4
across six regions; Fig. 5, Fang et al. 2001). For-
ests in the northeastern region sequestrated the
highest C storage among the vegetation biomass
(Fang et al. 2018) and litter (Zhu et al. 2017). This
result might suggest a higher C flux from the for-
est litter layer in the northeastern region than
that in the other regions of China under the
future climate warming scenario. Peng et al.
(2009) and Li et al. (2020) demonstrated the spa-
tial distribution of the sensitivity of soil respira-
tion in China’s forests and found that forest soil
respiration sensitivity to temperature was greater
in cold, high-latitude ecosystems than in warm,
temperate areas, similar to the distribution of the
Q10 value of litter decomposition in this study.
The temperature sensitivity of litter decomposi-
tion and soil respiration had similar spatial pat-
terns. At the climatic space, we also found that a
higher MAT led to a lower Qy, value, and the rel-
atively low Qj¢ values occurred primarily in the
sub-tropical evergreen forests of China. The com-
bination of a relatively lower temperature and
precipitation promoted higher Qo values for the
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litter decomposition rate in semi-humid forests,
where the MAP ranged from 400 to 800 mm.

We then evaluated the spatial patterns of tem-
perature sensitivity by comparing our modeled
estimate with the elevation gradient-based esti-
mate (Table 2). We re-calculated Q;o from seven
elevation gradients (17 Q¢ values) for the differ-
ent litter types. More than half of the Qi (4/7)
gradients based on elevation gradient predictions
could be comparable with our estimate. With
changes in elevation, not only air temperature
but also other environmental factors (e.g., soil
moisture, soil microorganisms, litter types, and
even forest types) experience considerable
changes (Salinas et al. 2011). In this study, no
obvious evidence showed that these factors
could change suddenly within the 21 x 21 pixels

Table 2. Comparison between elevation gradient-
based Q19 and spatial distribution of Q¢ in different

mountains.

Elevation Spatial

gradient-based distribution of

Q1o Site name Qo SD

1.8 Taiwant 1.8 0.2

21 Jianfengling 13 0.5
Mountain

4.0 Jianfengling 1.3 0.5
Mountain

3.4 Wuyi Mountains 14 0.9

29 Wuyi Mountains 14 0.9

29 Wuyi Mountains 14 0.9

29 Wuyi Mountains 14 0.9

2.3 Wuyi 1.4 0.9
Mountains¥

2.1 Wuyi 14 0.9
Mountains¥

22 Changbai 3.1 2.0
Mountaint

2.0 Changbai 3.1 2.0
Mountaint

43 Changbai 3.1 2.0
Mountaint

2.7 Changbai 3.1 2.0
Mountainf

1.3 Mountain 1.1 0.2
Shennongjiat

5.0 Jiuzhaigou 15 0.2
valley

34 Jiuzhaigou 1.5 0.2
valley

3.1 Yaoluoping 0.9 0.8

Nature Reserve

1 Indicates mountains for which Qo could be comparable
with our estimate.
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windows compared with the large area of Chi-
na’s forests.

Implications for the carbon cycle in China’s forests

In the Northern Hemisphere, China contains
almost all major forest types. Jia et al. (2018)
established a dataset to estimate litterfall produc-
tion in China’s forests and found that annual lit-
terfall production ranged from 0.3 to 17.0 ton/ha
in different forest types, similar to Eurasian for-
ests (0.3-15.1 ton/ha, Liu et al. 2004). Zhu et al.
(2017) stated that the C storage of forest litter per
unit area decreased during the past two decades.
According to the different climate scenarios of
the Intergovernmental Panel on Climate Change,
temperature will increase by 1.5°-2°C by 2100
(IPCC 2014). Under these warming scenarios, the
rates of litter decomposition and litter inputs will
continue to increase (Liu et al. 2009, Richardson
et al. 2013), but these increases might be lower
than those predicted by the model. The Q;, value
used by the Earth System Model (ESM) is 2.0,
and we estimated a value of 1.76 in this study.
With regard to future climate projections, the
results indicate that the C dioxide release from
the litter layer in China’s forest ecosystems might
be reduced.

CONCLUSIONS

The spatial distributions of the k value and its
temperature sensitivity in China’s forests were
estimated in this study. The estimated Qo value
in this study had considerable variance across
forest types and biomes; the variance ranged
from 0.05 to 11.68, with an average of 1.76. Such
variations in litter decomposition sensitivity to
the MAT with the abiotic and biotic factors
observed in China’s forests should be considered
in the projections of future regional C budgets.
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