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a  b  s  t  r  a  c  t

Monitoring  soil respiration  (Rs) at  regional  scales  using  images  from  operational  satellites  remains  a
challenge  because  of  the problem  in scaling  local  Rs to the  regional  scales.  In  this  study,  we  estimated
the  spatial  distribution  of  Rs in the Tibetan  alpine  grasslands  as  a product  of  vegetation  index  (VI). Three
kinds  of  vegetation  indices  (VIs),  that  is, normalized  difference  vegetation  index  (NDVI),  enhanced  vege-
tation  index  (EVI),  and  modified  soil  adjusted  vegetation  index  (MSAVI),  derived  from  Landsat  Thematic
Mapper  (TM)  and  Moderate-resolution  Imaging  Spectroradiometer  (MODIS)  surface  reflectance  product
were  selected  to test our  method.  Different  statistical  models  were  used  to analyze  the  relationships
among  the  three  VIs  and  Rs. The  results  showed  that,  based  on the  remote  sensing  data  from  either
MODIS  or  Landsat  TM, exponential  function  was  the  optimal  fit  function  for describing  the relationships
among  VIs  and  Rs during  the  peak  growing  season  of  alpine  grasslands.  Additionally,  NDVI  consistently
showed  higher  explanation  capacity  for the  spatial  variation  in  Rs than  EVI  and  MSAVI.  Thus,  we used
the  exponential  function  of  TM-based  NDVI  as  the  Rs predictor  model.  Since  it  is  difficult  to achieve  full
spatial  coverage  of the  entire  study  area  with  Landsat  TM  images  only,  we  used  the  MODIS  8-day  com-
posite  images  to  obtain  the  spatial  extrapolation  of  plot-level  Rs after  converting  the  NDVI  MODIS  into
its  corresponding  NDVI  TM.  The  performance  of  the  Rs predictor  model  was  validated  by comparing  it
with  the  field  measured  Rs using  an  independent  dataset.  The  TM-calibrated  MODIS-estimated  Rs was
within  an  accuracy  of  field  measured  Rs with  R2 of  0.78  and  root  mean  square  error  of  1.45  gC m−2 d−1.
At  the  peak  growing  season  of  alpine  grasslands,  Rs was  generally  much  higher  in  the  southeastern  part
of the Tibetan  Plateau  and  gradually  decreased  toward  the  northwestern  part.  Satellite  remote  sensing
demonstrated  the  potential  for the  large  scale  mapping  of  Rs in  this  study.

©  2012  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Soil respiration (Rs) is an important process in the carbon cycle of
terrestrial ecosystems (Raich and Schlesinger, 1992). At an annual
scale, Rs is estimated to contribute around 75 × 1015 gC year−1 to
the global carbon budget and is second only to oceans in the mag-
nitude of the gross CO2 flux to the atmosphere (Schlesinger and
Andrews, 2000). Thus, small changes in the rate of Rs may  alter the
annual C sink of terrestrial ecosystems (Cox et al., 2000; Trumbore,
2006). Accurately estimating Rs, as well as determining the effect
of ecological factors on Rs, is the key to evaluating the role of soil
biological processes in ecosystem carbon cycling (Fang et al., 1998;
Craine et al., 1999; Chen et al., 2011).

∗ Corresponding author. Tel.: +86 10 648 895 61; fax: +86 10 648 062 58.
E-mail address: huangni84@gmail.com (N. Huang).

Rs is not entirely produced by the decomposition of soil organic
matter (SOM) (Kuzyakov and Larionova, 2005). As most soils are
covered with vegetation, root-derived CO2 contributes to CO2 efflux
from the soil as well. Photosynthesis stimulates Rs after the translo-
cation of the recent photosynthate to roots and root-associated soil
microbes (Moyano et al., 2007). Although large amounts of fresh
carbon supply from photosynthesis serve as substrate for respi-
ration, they may  inhibit the decomposition of plant residues (de
Graaff et al., 2010) and determine the SOM decomposition (Balogh
et al., 2011). Bader and Cheng (2007) also found that the tem-
perature response of Rs is mediated by fresh carbon supply or
by current photosynthesis capacity. Therefore, Rs is closely corre-
lated with current photosynthesis, which has been demonstrated
clearly by previous studies (Högberg et al., 2001; Pendall et al.,
2001; Tang et al., 2005; Moyano et al., 2007). Because large sur-
veys of plant photosynthesis are virtually impossible to conduct
at the regional scale, a proxy for plant photosynthesis, which can
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Fig. 1. Field sampling sites of soil respiration during the peak growing season of alpine grasslands, and land cover data from MODIS in the Tibetan Plateau in 2006.

explain the spatial variations in Rs, is required. The plant biomass
is a good candidate, because it can strongly influence the rate of Rs

(Fang et al., 1998; Han et al., 2007; Geng et al., 2012).
An understanding of grassland C dynamics is essential to clarify

the contribution of grassland ecosystems to the global C budget
(Scurlock and Hall, 1998). When greenness is near peak value in
annual grassland communities, biomass and photosynthesis both
reach the maximum and are closely related (Reeves et al., 2006). At
the peak growing season of alpine grasslands in the Tibetan Plateau,
belowground biomass is found to be the most important driving
factor for large-scale variations in Rs (Geng et al., 2012).

Through measuring the reflected radiation from plant canopies,
remote sensing techniques can be used to evaluate the biophys-
ical parameters of plants within the sensor’s field of view (Guo
et al., 2011). The application of remote sensing in grasslands
worldwide has been especially successful because of the relative
structural simplicity of these ecosystems (versus, for example, that
of woodlands or forests), as well as the tendency of the grasslands,
especially those dominated by annual grasses, to be green for a
significant fraction of the year (Wylie et al., 2002; Butterfield and
Malmstrom, 2009). Numerous studies have shown that vegetation
indices such as the normalized difference vegetation index (NDVI)
can be strongly correlated with grassland biomass (Brinkmann
et al., 2011) and are often used as tools for detecting and quantifying
large-scale changes in grassland processes associated with global
change (Cleland et al., 2006; Brinkmann et al., 2011; Ouyang et al.,
2012). To date, limited studies have incorporated satellite-level
remote-sensing data and Rs measured in the field. Thus, examining
whether satellite-level remote-sensing data can be used to estimate
Rs is necessary.

Landsat data with high spatial resolution have proven extremely
useful in monitoring changes in land surfaces (Vogelman et al.,
2001), but the 16-day revisit cycle and frequent cloud contami-
nation have limited the application of Landsat over a large spatial
scale, especially in regions with very unstable atmospheric condi-
tions (e.g. Tibetan Plateau). The Terra or Aqua Moderate-resolution
Imaging Spectroradiometer (MODIS) provides frequent coarse-
resolution observations and is crucial for the timely monitoring of
larger region. Thus, combining the Landsat and the MODIS data
may  be useful in monitoring the spatial distribution of Rs across
a large area. This research explores the feasibility of using the

multispectral Landsat TM images and MODIS data in predicting
spatial patterns of Rs in the mid-growing season of alpine grass-
lands in the Tibetan Plateau. The primary objective of this study is
to determine the application of broadband VIs, which can be esti-
mators of plant biomass, to explain the spatial variation in Rs of the
alpine grasslands in the Tibetan Plateau.

2. Methods

2.1. Study area

This study area is located in Qinghai-Xizang (Tibetan) Plateau
in Southwest China (78.3◦–103.1◦E, 26.5◦–39.5◦N). The Tibetan
Plateau is the highest and largest plateau on earth, with a mean
elevation of about 4 km above sea level (asl). The mean annual
temperature on the plateau is only 1.6 ◦C and its annual precipita-
tion is around 413 mm (Yang et al., 2009). Greater than 60% of the
plateau is covered by natural alpine grasslands (alpine steppe and
meadow) (Li and Zhou, 1998). Moreover, a large part of the plateau
has not been disturbed by human activities. Within the distribution
area of alpine grasslands, 42 sites were selected for Rs measure-
ments along a transect which stretches from 30.31 to 37.69◦N and
90.80–101.48◦E, and elevations from 2.925 to 5.105 km asl during
late July and mid-August of 2006 (Fig. 1), when high convective
activity and monsoon precipitation were concentrated (Yang et al.,
2007). A detailed description of the sample sites can be found in
Geng et al. (2012).

2.2. Field measurements

At each field measurement site, the sample data included diur-
nal soil respiration rate (Rs), soil temperature at 0–10 cm depth (Ts),
soil moisture at 0–5 cm depth (SM), aboveground biomass (AGB)
and belowground biomass (BGB). The detailed description of the
field sampling design and the field data collection protocol can be
found in Geng et al. (2012).

2.3. Remote sensing data

The Landsat Level 1 terrain corrected images (L1T, resolu-
tion = 30 m)  were recorded by Landsat-5 TM instrument, and were
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Fig. 2. A flow chart for deriving 500 m soil respiration during the peak growing season of alpine grasslands on the Tibetan Plateau in 2006. Data layers and models are in the
green  boxes and operation procedures in the white boxes. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of the
article.)

obtained from the US Geological Survey’s Earth Resources Observa-
tion and Science. We  used the TM images which were temporally
close to the measurement time of the field samples to minimize
the effects of changing ground conditions. Only cloud-free images
of the sampling sites were used and all images were converted into
reflectance. The pre-processing of TM images such as radiometric
calibration, atmospheric correction, and geometric correction was
accomplished using the Environment for Visualizing Images (ENVI)
software. The detailed description of imagery procession can be
found in Huang et al. (2010).

MODIS 8-day surface reflectance product (MOD09A1,
500 m)  was downloaded (http://ladsweb.nascom.nasa.gov/data/
search.html) for the Tibetan Plateau during the peak growing
season (late July to mid-August) of 2006. Each MOD09A1 pixel
contains the best possible observation during an 8-day period as
selected on the basis of high observation coverage, low view angle,
the absence of clouds or cloud shadow, and aerosol loading.

2.4. Vegetation indices calculation

VIs derived from satellite sensors (i.e. Landsat and MODIS) were
used to estimate biomass and Rs of alpine grasslands in the Tibetan
Plateau. The most known and widely used vegetation index (VI) is
the NDVI developed by Rouse et al. (1974).  Using satellite-derived
reflectance data, this index was quantified by the following equa-
tion:

NDVI = RNir − RRed

RNir + RRed
(1)

where Rx is the reflectance at the given wavelength (nm).
Despite its intensive use, the relationship between the NDVI

and the vegetation biophysical parameters is known to be strongly
affected by soil reflectance in sparsely vegetated areas and sat-
urates in cases of dense and multi-layered canopy (Huete et al.,
2002). Therefore, improved indices like the enhanced vegetation

index (EVI; Huete et al., 2002) and the modified soil adjusted
vegetation index (MSAVI; Qi et al., 1994) were calculated for com-
parison. The EVI (Eq. (2))  was  proposed to use the blue band to
primarily account for atmospheric correction, variable soil, and
canopy background reflectance.

EVI = 2.5 × RNir − RRed

1 + RNir + 6 × RRed − 7.5 × RBlue
(2)

MSAVI (Eq. (3)) was  suggested as an improvement over soil
adjusted vegetation index (SAVI; Huete, 1988). This index is based
on the concept of soil line, which describes the typical signatures
of soils in a red or infrared bi-spectral plot and is obtained through
the linear regression of the near-infrared band against the red band
for a sample of bare soil pixels.

MSAVI = 2RNir + 1 −
√

(2RNir + 1)2 − 8(RNir − RRed)
2

(3)

2.5. Land cover data

The land cover map  of the Tibetan Plateau in 2006 was obtained
from the Terra + Aqua MODIS Land Cover Type product (MCD12Q1,
500 m,  http://ladsweb.nascom.nasa.gov/data/search.html) (Fig. 1).
MCD12Q1 includes 11 natural vegetation classes, three developed
and mosaicked land classes, and three non-vegetated land classes.
Based on this land cover data, we extracted the types of grasslands
in the Tibetan Plateau for our data analysis.

2.6. Regional extrapolation of soil respiration

In this study, we present a scaling-up technique to obtain infor-
mation on Rs of alpine grasslands in the Tibetan Plateau. The overall
approach consists of three key steps: analyzing the relationships
among the VIs (NDVI, EVI and MSAVI) and the Rs from field mea-
surements and determining the optimum Rs prediction model,
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calibrating MODIS VI using Landsat TM VI, and then extrapolat-
ing the developed model spatially using 500 m resolution MODIS
images (Fig. 2). The detailed procedure of data processing is given
as follows:

Step 1: We  separated the observed data into two datasets by using
a random generator. One dataset had 30 samples for building a
model, and the other had 12 samples for testing the model. We
focused on analyzing the relationships between Rs and VIs based
on the MODIS and TM images using linear, logarithmic, power,
and exponential functions. Then we selected the optimal fit func-
tion which had the highest coefficient of determination as the Rs

prediction model.
Step 2: Landsat TM images are difficult to achieve the full coverage
of the study area, mainly suffered from the effect of long revisit
cycle and cloud contamination. Thus, we converted the MODIS VI
to the TM VI. Then we used the Rs prediction model to estimate Rs

from 8-days composition MODIS images at each pixel to produce
the spatial distribution of Rs for the whole study area.
Step 3: By overlapping the spatial distribution of alpine grasslands
from the land cover data with Rs distribution map  from the MODIS,
we derived the spatial distribution of Rs for alpine grasslands in the
Tibetan Plateau. Then, we evaluated the accuracy of prediction of
simulated Rs using the independent test dataset.

2.7. Statistical analyses

Prior to statistical analyses, the parameters were tested for
normality. Pearson correlation coefficient (r) was calculated to
describe the relationships among Rs and related biotic and abiotic
factors (i.e. AGB, BGB, SM,  and Ts). Linear and nonlinear regres-
sion analyses were used to examine the relationships among the
VIs (NDVI, EVI, and MSAVI), Rs, AGB, and BGB. The coefficient of

Table 1
Pearson correlation coefficients between aboveground biomass (AGB), belowground
biomass (BGB), soil moisture at 0–5 cm depth (SM), soil temperature at 10 cm depth
(Ts), and diurnal soil respiration rate (Rs) during the peak growing season of alpine
grasslands in the Tibetan Plateau in 2006.a

AGB BGB SM Ts Rs

AGB 1 0.78**** 0.47** −.36* 0.77****

BGB 1 0.64**** −0.44** 0.89****

SM 1 −0.69**** 0.69****

Ts 1 −0.52***

Rs 1

a n = 42.
* p < 0.05.

** p < 0.01.
*** p < 0.001.

**** p < 0.0001.

determination (r2) was  used to evaluate the performance of the Rs

models. The higher the r2 values the better will be the fit to the
observed data. All our statistical analyses were carried out using
the SPSS 13.0 software package (SPSS, Chicago, IL, USA).

3. Results

3.1. Soil respiration and field-measured factors

Table 1 describes the relationships among Rs and the field-
measured factors. At the peak growing season of alpine grasslands,
BGB showed the highest correlation with Rs (r = 0.89). The following
was AGB and SM,  with correlation coefficients (r) of 0.77 and 0.69,
respectively. By contrast, Ts displayed relatively weak correlation
with Rs (Table 1). Detailed explanation regarding the correlations
between soil respiration and field-measured factors (i.e. AGB, BGB,
SM,  and Ts) can be found in Geng et al. (2012).

Fig. 3. Exponential relationships between diurnal soil respiration (Rs) and spectral vegetation indices (VIs) during the peak growing season of alpine grasslands in the Tibetan
Plateau in 2006 (n = 30). VI MODIS is the vegetation index (VI) calculated from the MODIS images, and VI TM is the VI calculated from the Landsat TM images. The VIs are
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil adjusted vegetation index (MSAVI).
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Fig. 4. Exponential relationships between aboveground biomass (AGB) and spectral vegetation indices (VIs) during the peak growing season of alpine grasslands in the
Tibetan Plateau in 2006 (n = 30). See Fig. 3 caption for explanations of the VI MODIS, VI TM and VIs.

3.2. Relationships between soil respiration of alpine grasslands
and spectral vegetation indices

The VIs (NDVI, EVI, and MSAVI) from the MODIS (VIs MODIS)
and Landsat TM (VIs TM)  consistently showed statistically signif-
icant relationships with Rs at the peak growing season of alpine
grasslands in the Tibetan Plateau (Fig. 3). Moreover, exponential
function was found to be the optimal function for describing the
relationships among VIs and Rs. Based on either the MODIS or
the TM images, the NDVI consistently showed higher explanatory
power for Rs spatial variations than the EVI and the MSAVI. How-
ever, compared with the exponential model using NDVI MODIS, the
r2 of the exponential model using NDVI TM greatly improved from
0.56 to 0.71.

Similar to the correlation between the VIs and the Rs, the optimal
fit functions for the relationships among the VIs and either AGB or
BGB were also exponential functions (Figs. 4 and 5). Among the
three VIs, the NDVI from either the MODIS or the TM is still the
best estimator for the AGB or the BGB of alpine grasslands in the
Tibetan Plateau. The NDVI TM showed better correlation with the
biomass of the alpine grasslands than the NDVI MODIS. In addition,
the coefficients of determination from the VI MODIS or the VI TM
versus the BGB were consistently higher than those coefficients
from their corresponding VI versus AGB (Figs. 4 and 5).

3.3. Mapping spatial patterns of soil respiration

As NDVI TM was more powerful than the NDVI MODIS for esti-
mating Rs of the alpine grasslands, this index was  subsequently
used to estimate the spatial pattern of Rs at the peak growing season
of alpine grasslands in the Tibetan Plateau. To achieve the scaling up
from field plot-level measurements to the total plateau region, the
NDVI MODIS was first calibrated by using the NDVI TM.  The results
showed that there was a good correlation between NDVI MODIS

and NDVI TM (r2 = 0.83) (Fig. 6). In accordance with the regres-
sion relationship between NDVI MODIS and NDVI TM (Fig. 6), we
converted the NDVI MODIS value into its corresponding NDVI TM
value. The final Rs prediction model for alpine grasslands was  fol-
lowing:

Rs = 0.9805 × e2.5763×(0.9655×NDVI MODIS+0.0166)

r2 = 0.71, p < 0.0001
(4)

where Rs was the diurnal soil respiration (gC m−2 d−1),
NDVI MODIS was  the NDVI calculated from the MODIS images.

Then, based on the Rs prediction model (Eq. (4)), land use data,
and MODIS 8-day composite reflectance product in the Tibetan
Plateau, we  derived the spatial patterns of Rs at the peak grow-
ing season of alpine grasslands (Fig. 7). The Rs of alpine grasslands
was generally much higher in the southeastern part of the Tibetan
Plateau and gradually decreased toward the northwestern part.

Fig. 8 shows the result of the accuracy assessment of the Rs pre-
diction model. Field measured Rs was  comparable to the calibrated
NDVI MODIS-estimated Rs. Based on the independent test dataset,
calibrated NDVI MODIS-estimated Rs accounted for 78% of spatial
variation in ground measured Rs, and the RMSE is 1.45 gC m−2 d−1.
The result of the accuracy assessment suggests that the predic-
tion model, which used calibrated NDVI MODIS as the dependent
variable, is effective for the estimation of Rs.

4. Discussion

4.1. The relationships between alpine grassland biomass and
spectral vegetation indices

Significant relationships were found among the VIs (NDVI, EVI,
and MSAVI) and biomass (AGB and BGB) of the alpine grasslands
in the Tibetan Plateau. This outcome is consistent with the results
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Fig. 5. Exponential relationships between belowground biomass (BGB) and spectral vegetation indices (VIs) during the peak growing season of alpine grasslands in the
Tibetan Plateau in 2006 (n = 30). See Fig. 3 caption for explanations of the VI MODIS, VI TM and VIs.

obtained in the previous studies conducted on the same area (Chen
et al., 2009; Yang et al., 2009). In comparison with the correlations
between alpine grassland BGB and VIs, the correlations between
AGB and VIs were consistently weaker (Figs. 4 and 5). This can be
most likely attributed to the presence of senescent or dry vege-
tation. Non-photosynthetically active vegetation increases visible
reflectance which limits the use of indices that dependent on the
ratio between visible and near-infrared reflectance patterns (Todd
et al., 1998; Brinkmann et al., 2011). Furthermore, remote sensing
is usually used to estimate green vegetation cover and the VIs
are indicative of green vegetation (Guo et al., 2011). When leaves
senesce, the VIs may  no longer aptly predict AGB (Huete et al.,
1985; Marsett et al., 2006; Butterfield and Malmstrom, 2009). In
this study, BGB is mainly vivid root biomass, which is closely related

Fig. 6. Relationship between NDVI MODIS (NDVI calculated from the MODIS
images) and NDVI TM (NDVI calculated from the Landsat TM images) during the
peak growing season of alpine grasslands in the Tibetan Plateau in 2006 (n = 30).

with the green part of aboveground vegetation. Therefore, these VIs
were better correlated with BGB than with AGB.

The relationships among the VIs MODIS and the biomass of
alpine grassland (i.e. AGB and BGB) were consistently poorer
than the relationships between the VIs TM and AGB or BGB
(Figs. 4 and 5). This may  be due to the fact that coarse spatial
resolution information (MODIS images) limited its usefulness for
detailed studies in landscapes with heterogeneity at finer scales
(Fisher and Mustard, 2007). A pixel in the 500 m resolution of
MODIS images may  cover multiple types of plant communities.
These plant communities may  have different species richness, soil
texture, and topography conditions, which complicated the rela-
tionship between the biomass of alpine grasslands from small plot
measurements and the spectral information of satellite (Butterfield
and Malmstrom, 2009).

Furthermore, accurate image-based monitoring of plant ABG is
limited by the effects of bare soil and vegetation clumping, which
resulted in non-linear relationships between the measured signals
and the biophysical properties of the vegetation (Huete et al., 1992;
Paruelo and Lauenroth, 1995; Chen et al., 2009). Our  study also
demonstrated that the highest r2 were achieved with nonlinear
exponential models, but not linear model. This finding supported
the findings of Hansen (1991), which showed a strong exponential
relationship between NDVI and the biomass of Arctic and sub-Arctic
vegetation types.

Moreover, our analysis revealed that the performance of
biomass prediction of EVI and MSAVI, which were developed
specifically to help accounting for the effects of background soil
reflectance when vegetation is not fully covered (Qi et al., 1994;
Huete et al., 2002), were not higher compared with the perfor-
mance of NDVI. This might be explained by the estimated soil line
parameters for MSAVI and added blue band for EVI, which were
not substantially different from that assumed by the NDVI in the
present study area. The same result was also found by Brinkmann
et al. (2011) in semiarid rangelands. Therefore, NDVI seemed to
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Fig. 7. Spatial patterns of soil respiration during the peak growing season of alpine grasslands in the Tibetan Plateau in 2006.

be the best predictor for AGB and BGB of alpine grasslands in the
Tibetan Plateau, which confirms the reports of recent studies (Wylie
et al., 2002; Zhao et al., 2007; Flynn et al., 2008; Brinkmann et al.,
2011; Guo et al., 2011).

4.1.1. Spatial pattern of soil respiration in alpine grasslands
BGB can explain about 80% of the spatial variation in Rs (Table 1

and Geng et al., 2012), indicating that BGB is a major factor in influ-
encing the spatial variation of Rs of alpine grasslands in the Tibetan
Plateau. The reason may  be that alpine grasslands have a high root
biomass density (Yang et al., 2009). Thus, autotrophic respiration
contributes a large proportion of the total respiratory CO2 efflux,
which has been discussed in detail by Geng et al. (2012).

In the Tibetan Plateau, Rs at the peak growing season of alpine
grasslands showed varying values and spatial patterns. At the
southeast, the distribution of alpine grasslands was concentrated
and Rs was relatively high, but at the northwest, the distribution
of alpine grasslands was sparse and the value of Rs was low. The
reason may  be attributed to the quantity and quality variation in
the biomass of the alpine grasslands in the Tibetan Plateau area.
For the alpine grasslands in the Tibetan Plateau, AGB and BGB were
closely related (Yang et al., 2009). Furthermore, NDVI was found to
be an effective tool to study the changes in the vegetation cover in
the Tibetan Plateau (Ding et al., 2007; Zhou et al., 2007; Zhong et al.,
2010), supporting our results that NDVI is the best predictor for AGB
and BGB of the alpine grasslands. In addition, the spatial pattern of
AGB of the alpine grasslands was in accordance with the climatic
conditions in the Tibetan Plateau, which made the southeastern
part more suitable for vegetation growth than the northwestern
part (Niu et al., 2004; Zhou et al., 2007; Zhong et al., 2010). Yang
et al. (2009) also found that the AGB of the alpine grasslands exhibit
a gradually decreasing trend from the southeast to northwest due to
the growing season precipitation in the Tibetan Plateau. The same
phenomenon was also observed in the temperate grasslands in arid
and semi-arid regions in China (Fu et al., 2006; Jin et al., 2009).
These findings provide a suitable explanation for the spatial pat-
tern of Rs at the mid-growing season of alpine grasslands in the
Tibetan Plateau.

The accuracy of this method, with a r2 of 0.78 and a RMSE of
1.45 gC m−2 d−1, is slightly lower than the accuracy estimations of
the Rs in a tropical grassland (Caquet et al., 2012) and in an oak
forest (Joo et al., 2012). The accuracy is also comparable to the esti-
mation of Rs in a paddy ecosystem (Ren et al., 2007). However, our
method is largely superior to methods which are based only on field
measurements. For instance, our method can answer large-scale
questions about the regional variation of Rs at the peak growing sea-
son of alpine grasslands at very low cost (all the satellite data used
here are available for free) compared to observations of field plots at
the local level. In addition to its immediate applications for regional
estimation of Rs, our large-scale estimation of Rs method can be a
useful scientific tool for research work that aim to understand the
Rs response of alpine grasslands to global warming, especially in
the climate-sensitive Tibetan Plateau (Zhou et al., 2007; Kang et al.,
2010; Zhao et al., 2011; Zhong et al., 2011).

Fig. 8. TM-calibrated NDVI MODIS-estimated soil respiration (Rs) and correspond-
ing  ground-based measurements with r2 and RMSE (gC m−2 d−1) during the peak
growing season of alpine grasslands in the Tibetan Plateau in 2006 (n = 12).
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4.1.2. Soil respiration field measurement
Problems may  be inherent in using the soil flux chamber, as it

allowed us to measure only the Rs taking place through the soil
surface within a PVC soil collar (10 cm inside diameter and 5 cm
in height). We  were limited in our ability to estimate the soil CO2
flux of the entire stand, although five to seven PVC soil collars were
placed along a straight line at one-meter intervals to derive the
plot-level Rs value. This problem was compounded when the Rs

from soil flux chamber were compared to the satellite images. For
example, in the MODIS 8-day composite reflectance image, each
pixel represents an area of 500 m × 500 m and includes different
plant communities and soil conditions. The relative contributions
of these sources of Rs are important, but they cannot be mea-
sured through this method. We  used the 30 m resolution of Landsat
TM image to calibrate the coarse resolution MODIS images, which
reduced the effect of mixed pixels to a certain extent. This research
certainly needs to be continued in other ecosystems. Until a valid
method to measure the Rs over a large spatial scale is established,
the application of a small, portable, and more affordable soil flux
chamber is still a good method for studying the spatial patterns of
Rs.

4.1.3. Uncertainties
In this study, we focused our analysis on the peak growing sea-

son of alpine grasslands. Therefore, the results may  be not suitable
for non-growing season or in regions where Rs is controlled mainly
by other factors, such as temperature, moisture, soil organic carbon
content, and other factors. In addition, the MODIS images used in
this current study formed a good source of data because we  were
able to achieve full coverage of the entire study area with high-
quality data. However, the spatial resolution of 500 m was  relatively
coarse, although we used the high spatial resolution Landsat TM
images to calibrate the MODIS images. This creates another source
of uncertainty.

5. Conclusion

A remote sensing-based method was developed to estimate
the spatial pattern of Rs in the alpine grasslands in the Tibetan
Plateau. The method used was based on the result of a recent
study (Geng et al., 2012) that BGB is the most important driving
factor for large-scale variations in Rs at the peak growing sea-
son of alpine grasslands in the Tibetan Plateau. By selecting VIs
that have potential for estimating plant biomass, we  examined
the capacity of VIs from Landsat TM and MODIS images to predict
the spatial variation in Rs in the alpine grasslands in the Tibetan
Plateau.

Based on the remote-sensing data from either MODIS or Land-
sat TM,  the exponential function was found to be the optimal fit
function for describing the relationships among the VIs and the
Rs. The VIs TM consistently showed better relationships with Rs

than VIs MODIS. Moreover, NDVI consistently showed higher accu-
racy in estimating the spatial variation of Rs than the EVI and the
MSAVI. Thus, the exponential function of NDVI TM versus Rs was
used as the predicting model to estimate the spatial patterns of
Rs of the alpine grasslands. However, as the Landsat TM images
are difficult to achieve full coverage of the whole study area, we
calibrated the NDVI MODIS using the NDVI TM by converting the
NDVI MODIS into its corresponding NDVI TM.  Then, based on the
500 m-resolution MODIS 8-day surface reflectance product and
land cover data in the Tibetan Plateau, we estimated the spatial
variations of the Rs during the peak growing season of alpine grass-
lands using the TM-calibrated Rs prediction model. The calibrated
NDVI MODIS-estimated Rs agreed well with ground measurements
based on the independent test samples.

As the alpine grasslands have a high root biomass density at
the peak growing season, the autotrophic respiration contributes a
large proportion of the total Rs, and BGB explains the great spatial
variation of the Rs. Thus, the VIs correlated with the BGB can be
used to estimate Rs. The results should have implications for other
vegetation types which have similar physiological conditions as the
alpine grasslands. Using the NDVI, the Rs of alpine grasslands can be
predicted from the remote sensing data and can be upscaled using
remotely sensed data.

Understanding and predicting the spatial variability of Rs is a key
issue in parameterizing grassland ecosystems in global vegetation
models. Therefore, cross-ecosystem comparisons of Rs and optical
properties are essential to explore and scale the soil CO2 flux of
grasslands. Further analyses are also required to investigate the
relationships between Rs and VIs at an early or later growing season
from different satellite platforms.
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