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A B S T R A C T

Soil nitrogen (N) and phosphorus (P) are common limiting nutrients affecting plant primary productivity
in alpine ecosystems due to the low decomposition rate, though anthropogenic activities have greatly
increased their inputs into ecosystems. Little is known regarding the effects of increasing N and P
availabilities on the functioning of belowground microbial communities. To determine how soil
microorganisms respond to N and P addition, we measured plant primary productivity, soil microbial
biomass, soil mineral N availability, soil respiration, and the activities of soil extracellular enzymes after
two years of N- and P-addition in an alpine grassland ecosystem on the Tibetan Plateau. We observed no
significant effect of N addition on plant biomass, soil microbial biomass, soil respiration, or the activities
of soil extracellular enzymes. In contrast, P addition increased plant biomass but suppressed the activities
of most labile-C-cycling enzymes at 0–10 cm of soil depth, although the effects on soil microbial biomass
and soil respiration were minor. Moreover, there was no interaction between N and P addition on these
variables. Overall, N addition does not appear to exert a significant effect on plant primary productivity
and microbial activity, whereas P addition increases plant primary productivity and tends to suppress
topsoil microbial activity after two years of nutrient application.
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1. Introduction

Nutrient availability, e.g., nitrogen (N) and phosphorous (P),
frequently limit primary productivity in most terrestrial ecosys-
tems (LeBauer and Treseder, 2008; Vitousek et al., 2010). However,
anthropogenic activities have greatly increased the inputs of these
nutrients into the biosphere (Falkowski et al., 2000; Vitousek et al.,
1997). Increased nutrient availability often has multiple effects on
aboveground organisms, including biodiversity loss (Hooper et al.,
2012) and their associated ecosystem functioning and services
(Isbell et al., 2013; Smith et al., 1999). Meanwhile, nutrient
availability can be amplified by climate warming by enhancing
microbial decomposition of soil organic matter (Bardgett et al.,
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2008) which, in turn, stimulates plant growth and mediates
ecosystem carbon storage (Koyama et al., 2013; Mack et al., 2004;
Waldrop et al., 2004). However, the responses of belowground
microorganisms to nutrient addition remains poorly understood
(Leff et al., 2015).

Soil microorganisms produce extracellular enzymes to decom-
pose complex organic matter into biologically available nutrients.
In turn, these nutrients can mediate microbial metabolism and
growth (German et al., 2011). Nutrient availability influences
enzymatic activity by regulating microbial allocation to enzyme
production (Sinsabaugh and Moorhead, 1994) or by shifting the
abundance of specific enzyme-producing microorganisms (Allison
et al., 2008; Koyama et al., 2014; Wang et al., 2015). Furthermore,
the economic theories of microbial metabolism (resource alloca-
tion theory, Allison et al., 2011) predict that enzyme production
will increase when simple nutrient is limited (Allison and Vitousek,
2005; Koch, 1985), and decrease when nutrient is available in the
soil solution (Chróst,1991; Pelletier and Sygusch,1990; Sinsabaugh
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and Moorhead, 1994). For example, soil phosphatase has high
activity in P-limiting ecosystems (Turner and Wright, 2014), while
P addition tends to suppress phosphatase activity (Olander and
Vitousek, 2000). In a similar way, the activities of soil enzymes
related to carbon (C)- and N- cycling generally reflect microbial
demand for energy and nutrients (Turner and Wright, 2014).
Therefore, the activities of soil enzymes could serve as indicators of
microbial nutrient demand. However, positive, neutral, and
negative effects of nutrient addition on soil enzyme activities
have been observed in previous studies (Keeler et al., 2008; Shi,
2011; Tian et al., 2014; Wang et al., 2015), depending on research
sites and enzymes assayed (Johnson et al., 1998; Keeler et al.,
2008).

The Tibetan Plateau is one of the most sensitive areas to climate
change, with substantial soil organic C stocks (Shi et al., 2012; Yang
et al., 2008) that may be released by microbial decomposition with
ongoing climate change. In addition, this plateau mainly serves as a
receptor of environmental pollutants from primarily long-range
atmospheric transport (Tao et al., 2011; Wang et al., 2013) due to its
unique meteorological and geographical characteristics. For
example, Jia et al. (2014) reported that the alpine grasslands
receive �1.0–1.5 g N m�2 yr�1 atmospheric N deposition. However,
soil N and P are still considered as limiting nutrients for plant
primary productivity in alpine ecosystems (Jiang et al., 2013) due
to the low decomposition rate. Although soil microorganisms are
often sensitive to N addition (Leff et al., 2015), little is known
regarding the microbial responses to P addition. Therefore, an
investigation of the responses of soil microbial communities to N
and P addition on the Tibetan Plateau will improve our ability to
predict how soil biogeochemical cycles will respond to changes in
nutrient availability induced by global change.

The objective of our current study is to assess microbial
responses (e.g., soil respiration and enzyme activity as the
functional characteristics of microbial communities) to N and P
addition. Specifically, we measured plant primary productivity, soil
microbial biomass, soil mineral N availability, soil respiration, and
the activities of seven soil extracellular enzymes related to C-, N-,
and P-cycling (Table 1). We predicted that (1) N addition would
increase the activities of both C- and P-cycling enzymes but
suppress the activities of N-cycling enzymes, and (2) P addition
would increase the activities of both C- and N-cycling enzymes but
suppress the activity of P-cycling enzymes according to resource
allocation theory (Allison et al., 2008; Keeler et al., 2008).

2. Materials and methods

2.1. Site description

We collected samples from the Haibei Alpine Grassland
Ecosystem Research Station (37�360 N, 101�190 E, 3215 m) in
2010. The station is located in the northeast of the Tibetan Plateau
in a large valley that is adjacent to the Qilian Mountains (Fig. S1).
The seasonal variations of soil temperature at 5 cm of depth,
Table 1
Extracellular enzymes assayed in our study, and their abbreviations, functions, 

dihydroxyphenylalanine.

Enzyme Abbreviation 

a-1,4-glucosidase AG 

b-1,4-glucosidase BG 

b-1,4-xylosidase BX 

cellobiohydrolase CB 

b-1,4-N-acetyl-glucosaminnidase NAG 

acid phosphatase AP 

phenol oxidase POX 
volumetric soil moisture at 5 cm of depth, and daily precipitation in
2010 are shown in Fig. S2. In general, the temperature and
precipitation at the study site showed a unimodal pattern with
peaks in August. The mean daily temperature varied between
2.5 �C and 18.5 �C during our study period (May to September). The
mean daily soil moisture at 5 cm of depth also varied dramatically
(5.6–39.6%) with the daily precipitation (0–177 mm), with 83% of
the rain falling from May to September. The vegetation is
dominated by Kobresia humilis, Stipa aliena, and Elymus nutans.
The soil is Gelic Cambisol (WRB, 1998) with an average thickness of
65 cm. Topsoil (0–10 cm) has a pH value of 7.5, and contains
71.4 g kg�1 organic C, 7.8 g kg�1 total N, and 0.77 g kg�1 total P
(Huang et al., 2014).

2.2. Nutrient addition treatments

We conducted a field experiment of factorial N and P addition
with a randomized block design in May 2009. We established six
blocks for nutrient application within an area of 110 m � 75 m, and
each block contained 3 m � 3 m plots with four nutrient addition
treatments. Specifically, the treatments were (1) CK (control); (2)
N, nitrogen addition in the form of urea at a rate of 10 g N m�2

year�1; (3) P, phosphorus addition in the form of triple
superphosphate at a rate of 5 g P m�2 year�1; and (4) NP, a
combination of nitrogen and phosphorus addition in the form of
urea and triple superphosphate at a rate of 10 g N and 5 g P m�2

year�1. The background N deposition ranged from 1.0–1.5 g N m�2

year�1 at our site in the 2000 s (Jia et al., 2014), indicating that the
levels of N addition (10 g N m�2 year�1) in this study were higher
than the natural N deposition. These high rates of nutrient addition
were chosen because they are typical values applied to alpine
grasslands on the Tibetan Plateau (Jiang et al., 2013; Liu et al., 2012;
Tian et al., 2014; Zheng et al., 2014). Nutrients were added once per
year (July 15th in 2009 and July 5th in 2010) (Yang et al., 2014).

2.3. Soil sampling

We removed surface litter and randomly collected three soil
cores with a diameter of 3.5 cm from the topsoil (0–10 cm) and
subsoil (10–20 cm) on four occasions (May 3, June 14, August 9, and
September 16–twice before and twice after the nutrient addition in
2010; Fig. S2). In brief, samples from the same depth in each plot
were pooled, packed in polyethylene bags, immediately stored in a
portable refrigerator, and transported to the laboratory. The
composite samples were passed through a 2-mm sieve and then
stored at �20 �C for no more than one week until enzyme analyses
could be performed (Jing et al., 2014). We acknowledge that
freezing may influence the activities of soil extracellular enzymes
(DeForest, 2009), but it should not have differential effects on the
activities of soil extracellular enzymes in nutrient-added versus
control treatments (Keeler et al., 2008; Stone et al., 2012).
Gravimetric water content was determined by drying at 105 �C
for 48 h. To minimize the measurement time of the activities of soil
and corresponding substrates. 4-MUB = 4-methylumvelliferyl; L-DOPA = L-3,4-

Function Substrate

labile-C cycling 4-MUB-a-D-glucoside
labile-C cycling 4-MUB-b-D-glucoside
labile-C cycling 4-MUB-b-D-xyloside
labile-C cycling 4-MUB-b-D-cellobioside
N cycling 4-MUB-N-acetyl-b-D-glucosaminide
P cycling 4-MUB-phosphate
recalcitrant-C cycling L-DOPA
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extracellular enzymes in the laboratory, we only collected soil
samples from five out of six blocks.

2.4. Plant and microbial biomass

We measured plant aboveground biomass by clipping living
plants from September 10–12, 2010. We harvested all living plants
from a 0.25 m � 0.25 m quadrat and weighed the resultant dry
matter as aboveground biomass after oven-drying the harvested
plants for 48 h at 65 �C. Three soil cores (3.5 cm in diameter) were
sampled for root biomass analyses in the same quadrat at depths of
0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm. Root samples were
soaked in water and cleaned from soil residuals using a 0.5-mm
sieve and then oven-dried at 65 �C for at least 48 h and weighed as
belowground biomass.

We measured soil microbial biomass C by using the chloroform
fumigation extraction method (Vance et al., 1987) on August 9 and
September 16, 2010. Subsamples (10 g) were directly extracted in
0.5 M K2SO4 for 30 min. Additional subsamples (10 g) were
fumigated with ethanol-free chloroform for 24 h and then
extracted in 0.5 M K2SO4 for 30 min. Both non-fumigated and
fumigated extracts were filtered and frozen at �20 �C until analysis
of dissolved organic C (DOC) was conducted by a TOC analyzer
(Multi N/C 3100, Analytik, Germany). To account for incomplete
extractability, we used an extraction efficiency factor of 0.45
(Vance et al., 1987) for calculation of soil microbial biomass C.
Microbial biomass C was expressed as mg C kg�1 dried soil.

2.5. Mineral N availability

We measured soil mineral N availability during the growing
season (May 3–September 16, 2010) using ion-exchange resin bags
(Allison and Treseder, 2008). In brief, each nylon mesh bag was
filled with 5 g anion or cation exchange resin, soaked in 0.5 M HCl
for 20 min, rinsed with deionized water, and washed with 2 M
NaCl. We placed two anion and two cation bags in each plot at a soil
depth of 5 cm. We retrieved the bags about six weeks later and
replaced them with new bags. Bags were rinsed in deionized water
Table 2
Summary of the linear mixed-effects model showing the effects of the N and P applicatio
belowground biomass, microbial biomass C, mineral N availability, and soil respiration.
were measured on September 10–12, 2010. df indicates the nominator and denominat

N P Da

Total biomass df 1,9 1,9 

F value 0.00 12.61 

P value 0.952 0.006 

Aboveground biomass df 1,9 1,9 

F value 6.04 17.04 

P value 0.036 0.003 

Belowground biomass df 1,9 1,9 

F value 0.47 6.88 

P value 0.510 0.028 

Microbial biomass C df 1,9 1,9 1,1
F value 0.01 0.73 2.1
P value 0.921 0.414 0.1

Mineral N availability df 1,12 1,12 2,3
F value 120.65 12.65 13
P value <0.001 0.004 <0

Soil respiration df 1,9 1,9 3,3
F value 0.00 0.22 83
P value 0.988 0.648 <0
and extracted with 60 ml 2 M KCl on a shaker table for 60 min. We
determined NH4

+-N and NO3
�-N concentration by colorimetric

analysis with a FIAstar 5000 flow injection analyzer (FOSS Tecator,
Höganäs, Sweden). Measurements from two anion and cation bags
were averaged to represent the mineral N availability (sum of
NH4

+-N and NO3
�-N) in that plot. Mineral N availability was

expressed as ng N g�1 resin day�1.

2.6. Soil respiration

We measured soil respiration during the growing season (May
12, June 16, August 6, and September 13) of 2010. In brief, we
inserted a PVC collar with a diameter of 20 cm and height of 8 cm
into each plot in July 2009 and used an LI-8100 portable soil CO2

flux system (Li-cor, Inc., Lincoln, NE, USA) for measurement of soil
respiration rates. Fluxes were expressed as mmol m�2 s�1. Above-
ground plants inside the collars were clipped and removed at least
one day before measurements to eliminate aboveground plant
respiration. To minimize the measurement time of soil respiration
in the field (9:00–11:00 am), we only measured soil respiration
from four out of the six blocks.

2.7. Soil extracellular enzyme activity

We measured potential activities of six soil hydrolytic enzymes,
including four enzymes related to labile-C cycling (a-1,4-glucosi-
dase, b-1,4-glucosidase, b-1,4-xylosidase, and cellobiohydrolase),
one related to N cycling (b-1,4-N-acetyl-glucosaminnidase), and
one related to P cycling (acid phosphatase) (Table 1), following a
method modified from Saiya-Cork et al. (2002), Steinweg et al.
(2012), and Bell et al. (2013) using fluorometric techniques. In brief,
we homogenized 2.75 g soil in 91 ml of 50 mM sodium acetate
buffer (pH 5.5) in a Waring blender for 2 min. Slurries of 200 ml
were then added to 96-well microplates along with 50 ml of
200 mM fluorometric substrate (saturating concentration) in each
well. We used six analytical replicates for each soil sample. The
microplates were incubated in the dark at 25 �C for 6 h. The amount
of fluorescence was determined using a fluorescence spectrometer
ns and/or sampling dates on plant total biomass, plant aboveground biomass, plant
 Total plant biomass, aboveground plant biomass, and belowground plant biomass
or degrees of freedom. Bold indicates P values < 0.05.

te N � P N � Date P � Date N � P � Date

1,9
1.77
0.217

1,9
0.00
0.997

1,9
2.11
0.180

2 1,9 1,12 1,12 1,12
0 0.04 0.26 0.52 0.37
73 0.849 0.620 0.487 0.557

2 1,12 2,32 2,32 2,32
.00 0.08 18.50 2.04 0.88
.001 0.776 <0.001 0.146 0.426

1 1,9 3,31 3,31 3,31
.17 2.35 0.34 0.45 0.11
.001 0.160 0.800 0.716 0.951
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(Spectramax M2, Molecular Devices, USA) set to 365 nm for
excitation and 450 nm for emission. Enzyme activity was
expressed as nmol g dry weight�1 h�1.

We measured one oxidative enzyme related to recalcitrant-C
cycling (phenol oxidase) (Table 1) following a modified method
described by Saiya-Cork et al. (2002) and German et al. (2011)
using L-3,4-dihydroxyphenylalanine (DOPA) as the substrate. We
homogenized 1 g of soil in 100 ml of 50 mM sodium acetate buffer
(pH 5.5) in a Waring blender for 2 min. The slurries were then
added to 96-well microplates along with 50 ml of 5 mM DOPA in
each well. The negative controls contained 200 ml of acetate buffer
and 50 ml of DOPA in each well. Blanks contained 200 ml sample
suspension and 50 ml of acetate buffer in each well. We used six
analytical replicates for each soil sample, blank, and control. The
microplates were incubated in the dark at 25 �C for 18 h. Activity
was quantified using a fluorescence spectrometer (Spectramax M2,
Molecular Devices, USA) by measuring the absorbance at 450 nm.
Enzyme activity was expressed as mmol g dry weight�1 h�1.

2.8. Statistical analyses

The assay data were analyzed using a linear mixed-effects
model (Pinheiro et al., 2011). Treatment, sampling date, and/or soil
depth were designated as fixed effects with plots nested in blocks
as random effects; plant biomass, microbial biomass C, mineral N
availability, soil respiration, and enzyme activity were designated
as dependent variables (Table 2 and 3). To make the sampling dates
comparable, we considered two dates (sampling dates before and
after nutrient application in July 2010) as contrasts in the linear
mixed-effects model (Table S1). Because there were no significant
interactions between each treatment and the sampling date for
enzymes (Table 3) or between each treatment and the contrast
sampling date (Table S1), we averaged the activities of each
enzyme across the four sampling dates (Fig. S2). To examine the
effects of N, P, and NP addition (relative to the control) on plant
biomass, microbial biomass C, mineral N availability, soil respira-
tion, and enzyme activity, we used meta-analysis to compare these
multiple independent variables. Meta-analysis is a statistical
technique for combing the results of multiple independent studies
or multiple independent variables within a single study (Koricheva
et al., 2013). It has been successfully applied in single studies of
responses of extracellular enzymes to N amendment (Saiya-Cork
et al., 2002). Specifically, we calculated natural log response ratio
(lnRR) for each treatment with the package “metafor” (Viechtba-
uer, 2010). The effects of N, P, and NP addition (relative to the
control) on plant biomass, microbial biomass C, mineral N
Table 3
Summary of the linear mixed-effects model for the effects of N and P applications, samplin
for each enzyme are shown in Table 1. df indicates nominator and denominator degre

AG BG BX 

df F value P value F value P value F value P valu
N 1,12 0.7 0.413 2.7 0.125 0.0 0.859
P 1,12 8.1 0.015 2.9 0.113 3.9 0.073
date 3,112 1.8 0.147 1.8 0.143 5.4 0.002
depth 1,112 132.1 <0.001 351.6 <0.001 148.3 <0.00
N � P 1,12 2.6 0.135 0.7 0.417 0.2 0.631
N � date 3,112 0.3 0.854 0.3 0.791 0.2 0.904
P � date 3,112 1.1 0.373 2.0 0.123 1.7 0.176 

N � depth 1,112 1.1 0.302 1.3 0.257 0.5 0.472
P � depth 1,112 0.6 0.456 0.6 0.446 0.3 0.612
date � depth 3,112 1.5 0.217 4.2 0.007 5.8 0.001
N � P � date 3,112 0.5 0.707 1.8 0.143 0.0 0.994
N � P � depth 1,112 0.1 0.813 3.1 0.081 0.0 0.914
N � date � depth 3,112 1.0 0.413 0.9 0.460 0.3 0.801
P � date � depth 3,112 0.4 0.738 0.7 0.560 1.4 0.235
N � P � date � depth 3,112 1.5 0.216 0.9 0.424 0.8 0.490
availability, soil respiration, and enzyme activities (Fig. 1 and 2)
were considered significant if the 95% confidence intervals of the
lnRR did not overlap with zero. We square root- or log-transformed
data where necessary to improve normality and reduce hetero-
scedasticity. All statistical analyses were performed in R 3.0.0
(R Development Core Team, 2013).

3. Results

3.1. Plant biomass, microbial biomass C, mineral N availability, and soil
respiration rate

Plant biomass, microbial biomass C, mineral N availability, and
soil respiration rate all showed additive responses (no significant
interaction, P > 0.10) to N and P addition (Table 2).

Plant aboveground biomass increased significantly from
476 � 70 (standard deviation) to 630 � 111 g m�2 year�1 (32%
increase) with N addition, to 735 �137 g m�2 year�1 (54% increase)
with P addition, and to 889 � 164 g m�2 year�1 (87% increase) with
NP addition. Belowground biomass only increased with P addition,
from 1716 � 405 to 2550 � 579 g m�2 year�1 (48% increase), while
total biomass increased with both P and NP addition, from
2192 � 424 to 3284 � 715 (50% increase) and 3001 � 257 g m�2

year�1 (37% increase), respectively (Fig. 1, Table 4).
No significant seasonal variations in soil microbial biomass C

were observed (Table 2). Data from the two sampling times were
thus pooled, and the meta-analysis showed that soil microbial
biomass C was not significantly affected with N, P, or NP addition
(Fig. 1). Mean microbial biomass C ranged from 205 � 59 mg C kg�1

dried soil in control plots to 260 � 113 mg C kg�1 dried soil in
P-added plots (Table 4).

Soil mineral N availability (as measured by buried resin bags)
varied seasonally, with the lowest concentrations being late in the
growing season (August 9–September 16, data not shown). The
meta-analysis showed that soil mineral N availability increased
significantly from 863 � 270 to 2363 � 600 ng N g�1 resin day�1

(174% increase) with N addition and to 1925 � 349 ng N g�1 resin
day�1 (123%) with NP addition, while exhibiting a non-significant
(P > 0.10) decreasing trend with P addition, from 863 � 270 to
689 � 138 ng N g�1 resin day�1 (20% decrease) (Fig. 1, Table 4).

Soil respiration at the study site followed a unimodal pattern,
peaking in August. Soil respiration increased from 2.23 � 0.17
mmol m�2 s�1 in May to 5.72 � 0.17 mmol m�2 s�1 in August and
then dropped to 3.98 � 0.14 mmol m�2 s�1 in September. The meta-
analysis showed that soil respiration was not significantly affected
by N, P, or NP addition (Fig. 1). Mean soil respiration ranged from
g dates, and soil depths on the activities of soil extracellular enzymes. Abbreviations
es of freedom. Bold indicates P values < 0.05.

CB NAG AP POX

e F value P value F value P value F value P value F value P value
 0.8 0.390 0.6 0.472 0.1 0.798 0.8 0.391

 7.9 0.016 1.4 0.262 2.1 0.175 1.8 0.201
 9.0 <0.001 0.1 0.952 13.5 <0.001 8.1 <0.001
1 163.3 <0.001 415.0 <0.001 27.7 <0.001 95.1 <0.001

 0.4 0.523 0.2 0.682 5.5 0.037 0.8 0.387
 0.2 0.928 0.3 0.858 0.3 0.811 0.8 0.525

1.6 0.183 0.5 0.689 2.5 0.066 1.1 0.345
 0.5 0.500 1.6 0.214 2.2 0.139 11.2 0.001
 0.3 0.572 2.6 0.108 6.8 0.010 3.3 0.074

 2.4 0.076 6.2 0.001 1.8 0.150 5.1 0.002
 1.1 0.337 0.2 0.917 0.9 0.445 0.1 0.976

 3.2 0.075 0.1 0.747 10.6 0.002 1.0 0.315
 1.1 0.370 0.8 0.488 1.2 0.321 0.1 0.947
 1.9 0.135 1.2 0.319 0.0 0.998 0.7 0.547
 1.2 0.314 0.2 0.874 0.7 0.530 0.4 0.742
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4.00 � 0.60 mmol m�2 s�1 in control plots to 4.27 � 0.55 mmol m�2

s�1 in NP-addition plots (Table 4).

3.2. Extracellular enzyme activity

N addition and NP addition had no detectable effects (P > 0.10)
on the hydrolytic and oxidative enzymes at either depth (0–10 cm
and 10–20 cm). The exceptions to this were that N addition
marginally (P < 0.10) increased b-1,4-glucosidase activity from
5.76 � 1.92 to 8.62 � 3.25 nmol g dry weight�1 h�1 at 10–20 cm of
depth, and that NP addition significantly (P < 0.01) decreased
cellobiohydrolase activity from 0.55 � 0.21 to 0.24 � 0.14 nmol g
dry weight�1 h�1 at 10–20 cm of depth (Fig. 2, Table 4). In contrast,
P addition tended to suppress the activity of most labile-C-cycling
enzymes at 0–10 cm of depth (P < 0.05), but had no detectable
effect at 10–20 cm (P > 0.10, Fig. 2). Specifically, P addition



Table 4
Plant biomass, microbial biomass C, mineral N availability, soil respiration rate, and enzyme activities of the studied site. Data shown are the mean and standard deviation for
each variable for n replicates of N and P treatment.

Variables n CK N P NP

Total biomass (g m�2 year�1) 4 2192.3 � 423.8 2503.5 � 299.0 3284.3 � 714.6 3000.8 � 257.5
Aboveground biomass (g m�2 year�1) 4 476.0 � 70.3 630.3 � 110.5 735.0 � 136.7 888.8 � 164.4
Belowground biomass (g m�2 year�1) 4 1716.3 � 404.6 1873.3 � 273.0 2549.5 �579.3 2112.0 � 362.6
Soil microbial biomass C (mg C kg�1 dried soil) 4 204.9 � 58.5 209.8 � 72.2 260.3 � 112.6 244.5 � 151.6
Soil mineral N availability (ng N g�1 resin day�1) 4 863.0 � 269.7 2362.5 � 599.8 688.6 � 137.6 1925.1 � 348.9
Soil respiration (mmol m�2 s�1) 4 4.00 � 0.60 4.14 � 0.16 4.04 � 0.37 4.27 � 0.55

0–10 cma

a-1,4-glucosidase (nmol g dry weight�1 h�1) 5 2.67b� 0.25 2.73 � 0.36 1.66 � 0.62 2.34 � 0.28
b-1,4-glucosidase (nmol g dry weight�1 h�1) 5 18.73 � 4.14 19.74 � 3.17 16.27 � 3.07 18.41 � 1.98
b-1,4-xylosidase (nmol g dry weight�1 h�1) 5 3.36 � 0.72 3.15 � 0.40 2.47 � 0.50 2.80 � 0.52
cellobiohydrolase (nmol g dry weight�1 h�1) 5 2.65 � 1.07 2.48 � 0.61 1.64 � 0.48 2.40 � 0.28
b-1,4-N-acetyl-glucosaminnidase (nmol g dry weight�1 h�1) 5 11.15 � 4.31 13.57 � 5.58 10.36 � 2.87 10.26 � 2.43
acid phosphatase (nmol g dry weight�1 h�1) 5 40.12 � 9.14 39.71 � 5.09 31.13 � 4.16 34.64 � 5.32
phenol oxidase (mmol g dry weight�1 h�1) 5 3.21 � 1.68 4.03 � 0.99 3.68 � 0.95 4.18 � 2.82

10–20 cma

a-1,4-glucosidase (nmol g dry weight�1 h�1) 5 0.76 � 0.47 0.58 � 0.30 0.49 � 0.30 0.54 � 0.28
b-1,4-glucosidase (nmol g dry weight�1 h�1) 5 5.76 � 1.92 8.62 � 3.25 5.60 � 0.84 6.00 � 0.97
b-1,4-xylosidase (nmol g dry weight�1 h�1) 5 1.07 � 0.37 0.99 � 0.42 0.93 � 0.19 0.87 � 0.28
cellobiohydrolase (nmol g dry weight�1 h�1) 5 0.55 � 0.21 0.72 � 0.42 0.32 � 0.12 0.24 � 0.14
b-1,4-N-acetyl-glucosaminnidase (nmol g dry weight�1 h�1) 5 2.63 � 1.40 3.86 � 2.02 2.06 � 1.08 2.27 � 0.96
acid phosphatase (nmol g dry weight�1 h�1) 5 26.16 � 6.75 30.64 � 6.40 35.03 � 6.37 25.07 � 3.70
phenol oxidase (mmol g dry weight�1 h�1) 5 10.04 � 4.44 8.03 � 5.05 15.67 � 4.64 8.95 � 3.10

a Enzyme activities at 0–10 cm and 10–20 cm of soil depth.
b Averaged across four sampling dates.
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significantly decreased a-1,4-glucosidase activity from 2.67 � 0.25
to 1.66 � 0.62 nmol g dry weight�1 h�1, b-1,4-xylosidase activity
from 3.36 � 0.72 to 2.47 � 0.50 nmol g dry weight�1 h�1, and
cellobiohydrolase activity from 2.65 �1.07 to 1.64 � 0.48 nmol g
dry weight�1 h�1 at 0–10 cm of soil depth (Fig. 2, Table 4). In
addition, P addition significantly decreased cellobiohydrolase
activity, from 0.55 � 0.21 to 0.32 � 0.12 nmol g dry weight�1 h�1

at 10–20 cm of soil depth (Fig. 2, Table 4).
Moreover, soil enzyme activities primarily varied with soil

depth and sampling date (P < 0.05, Table 3). For example, the
activities of the six hydrolytic enzymes tended to be higher in the
topsoil (0–10 cm), whereas the activity of phenol oxidase was
higher in the subsurface soil (10–20 cm; Table 4). In brief, acid
phosphatase activity exhibited the lowest decrease with soil depth,
from 40.12 � 9.14 to 26.16 � 6.75 nmol g dry weight�1 h�1 (35%
decrease) in the control plots, and cellobiohydrolase activity
showed the highest decrease with soil depth, from 2.65 �1.07 to
0.55 � 0.21 nmol g dry weight�1 h�1 (79% decrease) in the control
plots. In contrast, phenol oxidase activity increased with soil depth
from 3.21 �1.68 to 10.04 � 4.44 mmol g dry weight�1 h�1 in the
control plots. Additionally, four and six out of the seven measured
enzymes at 0–10 cm and 10–20 cm of soil depth, respectively,
showed significant seasonal variations, with the highest activity
being in the growing season (June–August; Table S2). For the
control plots, cellobiohydrolase activity showed the highest
seasonal variation, increasing from 1.88 � 0.59 nmol g dry
weight�1 h�1 on May 3 to 4.67 � 0.74 nmol g dry weight�1 h�1

(61% increase) on June 14 in the topsoil (Table S2).

4. Discussion

4.1. Neutral effect of N addition on soil enzymes

In this study, we found no detectable effect of N addition on soil
enzyme activities after two years of N addition in an alpine
grassland ecosystem. This result did not support the resource
allocation theory (Allison et al., 2008; Keeler et al., 2008), which
predicted that N addition would increase the activities of C- and
P-cycling enzymes, but suppress the activity of N-cycling enzymes.
The lack of a N addition effect on soil enzymes in this study was
unexpected, given that the amount of N we added was at the high
end of N-addition experiments and that a positive effect of N
addition on C- and P-acquiring enzymes has often been observed in
other ecosystems (e.g., Allison et al., 2008; Koyama et al., 2013;
Saiya-Cork et al., 2002; Wang et al., 2008). However, Bell et al.
(2010) also found that soil enzyme activity was unresponsive to N
addition across all seasons in a temperate old field. Here we
provide two potential explanations for the neutral effect of N
addition on soil enzyme activity observed in this study.

One potential explanation is that the short treatment period
might prevent us from detecting statistically significant changes in
soil enzymes after two years of N addition. The time scale over
which we examined the effect of N addition on soil enzymes is
important (Allison et al., 2010; Wang et al., 2015). For example,
Fauci and Dick (1994) found that short-term (�165 days) N
addition has limited effects on the activity of soil enzymes,
whereas long-term (�306 days) N addition has a large effect on soil
biological activity in a greenhouse experiment. In addition,
Olander and Vitousek (2000) reported that phosphatase and
chitinase activities in tropical montane rainforest soils did not
respond to one month of N and P fertilization, but showed negative
responses to four years of N and P fertilization. Therefore, soil
enzyme activities may start to show significant responses to N
addition in following years. Indeed, both soil respiration and
heterotrophic respiration started to show negative responses after
four years of N addition in this ecosystem (Ren et al., unpublished
data). Further measurements in the following years may reveal the
long-term impact of N addition on soil enzyme activities in this
alpine grassland ecosystem. In addition, sampling time may also be
responsible for the lack of enzymatic responses to N addition. As
the added compound (urea) could provide readily available N for
microbes, a stronger response of soil enzyme activity may be
expected right after N addition. The first two samplings (May 3 and
June 14) were before the second N application in July 5 2010 (with
the first N application in July 2009), and the last two samplings
(August 9 and September 16) were about 1 and 2 months after the
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N application. These sampling dates were chosen to represent
seasonal dynamics, but might fail to detect a significant pulse
response of microbial enzyme activity to N addition in this alpine
grassland ecosystem.

Another non-exclusive explanation may be related to the N
status of this ecosystem. The accumulation of available N in the soil
in the N and NP addition plots compared to the control plots (Fig.1)
suggests that the amount of added N (10 g N m�2 yr�1) exceeds the
capacity of N uptake by plants and microbes (Aber et al., 1989; Bell
et al., 2010). Likely, the background of N deposition (1.0–1.5 g N
m�2 yr�1) at this site over the past decades (Jia et al., 2014) had
provided enough available N for these alpine plants to grow. The
lack of a significant effect of N addition on plant total and
belowground biomass, soil microbial biomass C, and soil respira-
tion in this study (Fig. 2) provides further evidence that this alpine
grassland ecosystem may not be N-limited.

4.2. Negative effect of P addition on soil enzymes

Compared to the effect of N addition, the effect of P addition on
soil enzymes is less explored (Marklein and Houlton, 2012). In this
study, P addition generally suppressed the activity of most labile-
C-cycling enzymes at 0–10 cm of depth but had insignificant or
weak effects at 10–20 cm of depth (Fig. 2). Specifically, acid
phosphatase activity at 0–10 cm of depth was marginally
suppressed by P addition (Fig. 2), which is consistent with
previous studies (Clarholm, 1993; Olander and Vitousek, 2000;
Treseder and Vitousek, 2001; Wang et al., 2008), likely because
microbes reduce the production cost of N-rich phosphatase
enzymes in soils with high available P (Allison et al., 2011;
Treseder and Vitousek, 2001). Moreover, two enzymes (b-1,4-N-
acetyl-glucosaminnidase and phenol oxidase) were unresponsive
to P addition, whereas three C-cycling related enzymes (a-1,4-
glucosidase, b-1,4-xylosidase, and cellobiohydrolase) at depths of
0–10 cm all showed negative responses to P addition. Although this
finding is not consistent with our hypothesis that P addition
stimulates C- and N-cycling enzyme activities, it has been observed
in a few other studies. For example, Turner and Wright (2014)
Table 5
Summary of nitrogen and phosphorus addition effects on plant productivity, soil micro
results in this study. “ + ” indicates a positive effect, “-” indicates a negative effect, “ns”

N addition effect 

Plant productivity
Total biomass ns 

Aboveground biomass + 

Belowground biomass ns 

Soil microbial biomass
Soil microbial biomass C ns 

Soil nutrient availability
Soil mineral N availability + 

Soil respiration
Total soil respiration ns 

Root respirationa ns 

Heterotrophic respirationa ns 

Soil enzymes
Labile-C cycling enzymes ns 

N cycling enzyme ns 

P cycling enzyme ns 

Recalcitrant-C cycling enzyme ns 

a Data were not directly measured in this study.
b Most of the labile-C cycling enzymes were depressed in the topsoil.
showed that 10 years of P addition had no effect on b-1,4-
glucosidase activity, yet
suppressed b-1,4-N-acetyl-glucosaminnidase activity in a low-
land tropical forest.

Additionally, P addition increased plant growth in terms of both
aboveground and belowground biomass (Fig. 1), suggesting that
plant primary productivity is limited by available P in this alpine
grassland ecosystem. However, microbial biomass C and soil
respiration rate were unresponsive to P addition, and mineral N
availability tended to decline (by 20%) with P addition in this study
(Fig. 1). Based on the evidence above, we propose that P addition
may stimulate plant growth and the uptake of mineral N from the
soil, reducing the amount of N available in the soil and limiting
microbes to produce enzymes to decompose soil organic matter
(Wang et al., 2008). Therefore, the hypothesis of secondary
N-limitation due to P addition (Vitousek and Howarth, 1991;
Vitousek et al., 2010) may help explain our finding that soil labile-
C-cycling enzyme activities were suppressed by P addition but not
by NP addition. It is likely that P addition causes secondary
N-limitation for microbial activity, while combined N and P
addition relieves this N-limitation by providing additional
available N (Fig. 2). This working hypothesis is based on indirect
evidence and awaits further test in future studies.

4.3. Implications for soil carbon storage in this alpine grassland
ecosystem

In this study, we measured potential activities of seven
hydrolytic and oxidative soil extracellular enzymes in response
to a factorial N and P addition experiment in a Tibetan alpine
grassland ecosystem. In contrast to our original hypotheses, we
found that N and NP addition generally had no detectable effect on
soil enzymes, while P addition tended to suppress most labile-C-
cycling enzyme activities in the topsoil. This result is consistent
across the four sampling dates during the growing season after two
years of N and P addition, and is supported by the result from a
recent sampling after five years of nutrient addition in a nearby
grassland which had a similar experimental design (Jing et al.,
bial biomass, soil nutrient availability, soil respiration, and soil enzymes, based on
 indicates no effect.

P addition effect N + P addition effect

+ +
+ +
+ ns

ns ns

ns +

ns ns
+ ns
– ns

�b ns
ns ns
ns ns
ns ns
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unpublished data). It is worthy to note that the effects of nutrient
addition on soil enzymes in this study are combination of direct
effects (through changes in nutrient availability, Allison and
Vitousek, 2005) and indirect effect (through changes in root
biomass and substrate inputs, Stone et al., 2013). A few recent
studies that included both rooted and root-free soils (Phillips and
Fahey, 2008; Zhu et al., 2015) suggest that the present of living
roots do not remarkably affect the responses of soil enzyme
activities to nutrient addition. Nevertheless, future studies may
include a root-free reference soil to separate the direct and indirect
effects of nutrient addition on soil enzyme activities.

Taking measurements on all variables (plant biomass, soil
respiration, microbial biomass, and enzyme activity) together
could shed light on soil carbon cycling and storage in response to N
and P addition in this alpine grassland ecosystem (Table 5).
Although we did not directly measure heterotrophic respiration,
we could infer it from the difference between soil respiration
(directly measured) and root respiration (assumed to be positively
correlated with root biomass, Geng et al., 2012; Vicca et al., 2010).
In this study, N and NP addition had no effect on root biomass
(Fig. 1) and root respiration presumably. As soil respiration was
unresponsive to N and NP addition, heterotrophic respiration
should also be unresponsive to N and NP addition. This reasoning
was supported by the undetectable response of microbial biomass
and enzyme activity to N and NP addition (Fig. 1 and 2).
Additionally, P addition stimulated root biomass (Fig. 1) and root
respiration presumably. Because soil respiration was not affected
by P addition, heterotrophic respiration should be suppressed by P
addition. Such prediction is consistent with the comparable
microbial biomass and lower enzyme activities in P-added soils
than in control soils (Fig. 1 and 2). Taken together, these results
suggest that P addition may have a more positive effect on soil
carbon storage compared to N and NP addition because of the
higher carbon input from root biomass and lower carbon output
from heterotrophic respiration. Overall, our findings suggest that
soil enzyme activities of this alpine grassland ecosystem may be
more sensitive to increased P availability than to increased N
availability. Note that this finding is based on results after two
years of N and P addition. Further monitoring of plant primary
productivity, microbial activity, and soil carbon fluxes in the
following years should be helpful for understanding the long-term
response of soil carbon storage to nutrient addition in this alpine
grassland ecosystem.
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